高压变频器电动机保护配置

发布时间:2021-05-17 发布时间:
|
    根据国家能源政策的要求,节能减排工作已全面展开,而在大型火力发电厂,厂用电率的降低势在必行。对于占厂用电绝大部分的高压电动机来说,节能领域的重要技术措施就是高压变频技术的应用。随着电力电子技术的发展,变频器在电厂得到了广泛应用。目前的新建电厂,重要辅机如风机、水泵等,一般均要求考虑配置变频器拖动;越来越多的已建电厂正在进行或已完成高压电动机采用变频器的改造。高压电动机采用采用变频器拖动后,电动机保护如何配置才能保证机组安全可靠的运行,成为电厂、设计院、保护厂家关注的问题。

    1 传统电动机保护配置

    异步电动机的故障有定子绕组相间短路故障、绕组的匝间短路故障和单相接地故障;不正常运行状态主要有过负荷、堵转、起动时间过长、三相供电不平衡或断相运行、电压异常等。因此,对于高压电动机,根据规程以差动保护或电流速断为主保护,以过负荷保护、过流保护、负序保护、零序保护及低电压保护等作为后备保护。

    2 目前变频器电动机保护配置

    发电厂为保证系统的可靠性,高压电动机一般采用变频器带工频旁路,以便即使在变频器检修时也可通过工频旁路,保证电动机的正常运行。图1为现场高压电动机变频器改造的示意图,其中K1、K2开关保证变频器检修时,与主回路无接触点,此时K3开关闭合,电动机通过旁路运行。


    当电动机通过旁路运行,此时由厂用电中高压母线工频电压直接驱动电动机,进线开关QF处保护装置的保护对象是开关出线以及电动机本体。因此,此时应该按照常规电动机保护的要求配置电动机保护,有差动保护要求的,需要配置电动机差动保护。

    当旁路开关K3断开,电动机由变频器拖动时,进线开关QF处保护装置的保护对象是开关出线以及变频器。由于目前发电厂使用的变频器一般由整流变压器、控制柜等部分构成,即进线开关QF处保护装置的保护对象是开关出线以及整流变压器。此时电动机成为与厂用电母线隔离后高压变频器的负荷,因而电动机的保护应由高压变频系统的控制器实现。对于6~10 kV整流变压器,一般对其配置常规变压器后备保护,在整定时和常规变压器略有差异。此时电动机常规差动保护由于开关处电流和电动机中性侧电流频率不一致,无法进行差动保护,只能退出。

    目前一般变频器电动机保护配置有:电动机保护测控装置、电动机差动保护装置、变压器保护测控装置。电动机保护装置和变压器保护装置通过旁路开关进行功能的投退:即旁路开关断开,此时为变频器拖动电动机方式,变压器保护装置投入,电动机保护装置和电动机差动保护装置退出;当旁路开关闭合,此时为工频电网直接拖动电动机,电动机保护装置和电动机差动保护装置投入,变压器保护装置退出。

    目前此种保护配置方式主要存在两个问题:
    (1)对于2 000 kW以上的电动机,需要配置差动保护。因此,在变频器拖动电动机情况下,电动机差动保护退出,保护的可靠性受到影响。
    (2)任意时刻,变压器保护装置、电动机保护装置只有一台投入使用,降低了装置的使用效率。

3 变频器电动机差动保护
    在使用变频器拖动电动机的情况下,传统电动机差动保护无法使用的原因为:电动机机端CT为图1中开关柜处的CT1和电动机中性侧CT即CT3这两处CT的电流频率不相同。文献提出采用磁平衡差动保护来实现,但实际中存在几个问题:
    (1)目前发电厂使用的电动机基本上都无法提供磁平衡差动所需要的中性侧电缆引出。
    (2)磁平衡差动的电流是在变频器下方,非工频电流。对于微机保护,按照工频50 Hz整定的定值不适用于非工频情况。
    由于差动保护的两侧电流必须为同一频率下电流。可考虑在变频器下方、电动机上方加装一组CT,即CT2,此组CT可安装于变频器柜中,由CT2和CT3两组电流构成差动保护。
    常规差动保护为相量差动,其原理是用傅里叶算法,根据一个周波的采样点计算出流入和流出电流的实虚部,再计算出差动和制动电流的幅值、相位后用相量比较的方式构成判据。由于电流非50 Hz工频,因此在进行傅里叶计算时需要通过频率跟踪保证计算结果的正确。由于变频器下方无电压引入,因此通过常规的电压跟踪频率方式无法实现。有厂家提出利用电流跟踪频率,但由于电流跟踪频率存在较大的误差,容易引起保护的误动、拒动,在实际中并不采用。
    对于差动保护中采用的采样值差动,为微机保护中所有通道采样为电流在同一时刻的瞬时值:当被保护设备没有横向内部故障时,各采样电流值之和为零;当发生内部故障时,各采样电流值之和不为零。采样值差动保护就是利用采样值电流之和按一定的动作判据构成。
    与常规相量差动保护相比,采样值差动具有动作速度快、计算量少等特点,是微机差动保护领域的一个突破,己应用于母差、变压器等保护中。采样值差动不涉及傅氏计算,变频器所带来的谐波也不会影响其计算精度,因此,对工作于25~50 Hz的高压变频电动机,其差动保护可以利用该算法实现。
    江苏金智科技股份有限公司基于采样值差动原理开发的变频器电动机差动保护,已经在现场成功投运,运行一段时间以来,未出现保护误动、拒动的情况,说明采样值差动可以应用于变频器电动机的差动保护。该差动保护装置电流输入有3组CT,分别为开关侧CT1、变频器下方电动机上方增加的CT2、中性侧CT3,同时引入工频旁路开关接点。当旁路开关接点闭合时,此时为常规相量差动,采用傅里叶算法,差动电流为CT1和CT3电流;当旁路开关接点断开时,此时为采样值差动,采用采样值差动算法,差动电流为CT2和CT3电流。

4 变频器电动机后备保护
    目前一般变频器电动机配置一台电动机保护测控装置和一台变压器保护测控装置,两台装置之间通过旁路开关进行投退。由于任意时刻,两台装置只有一台投入使用,降低了装置的使用效率。
    变压器保护主要功能包括过流保护、负序保护、接地保护、过负荷保护等;电动机保护功能,主要包括过负荷保护、过流保护、负序保护、零序保护及低电压保护等。
    江苏金智科技股份有限公司在此基础上开发了一台全新的变频器电动机后备保护装置,装置中包含有变压器保护、电动机保护功能,其中的变压器保护、电动机保护功能的投退通过旁路开关接点所形成的硬压板进行控制,这样把原先两台装置的功能集成到一台装置中,提高现场装置的使用率。此后备保护装置在多个现场得到了广泛应用,受到了用户的一致认可。
5 结束语
    对于目前发电厂用高压变频器带电动机的保护,传统地采用傅里叶算法的相量差动不太适用,可以采用采样值差动保算法实现差动保护;可以将现有的两台变压器和电动机保护装置的功能集成在一台装置中,实现后备保护,这样既满足电动机保护的要求,又节省了成本。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
RCC电源变压器设计方法