单片机 > 单片机程序设计 > 详情

51单片机结合NRF24L01对舵机进行无线控制

发布时间:2020-08-21 发布时间:
|
发送端程序如下:

 

#include 
#include 
#include 
typedef unsigned char uchar;
typedef unsigned char  uint;
sbit 	MISO=P1^5;
sbit 	MOSI=P1^4;
sbit	SCK=P1^3;
sbit	CE=P1^1;
sbit	CSN=P1^2;
sbit	IRQ=P3^3;
sbit	KEY1=P3^4;
sbit	KEY2=P3^5;
sbit   KEY3=P3^6;
sbit   KEY4=P3^7;
#define TX_ADR_WIDTH    5   	
#define RX_ADR_WIDTH    5   	
#define TX_PLOAD_WIDTH  20  	
#define RX_PLOAD_WIDTH  20  	
uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//本地地址
uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//接收地址
#define READ_REG        0x00  // 读寄存器指令
#define WRITE_REG       0x20  // 写寄存器指令
#define RD_RX_PLOAD     0x61  // 读取接收数据指令
#define WR_TX_PLOAD     0xA0  // 写待发数据指令
#define FLUSH_TX        0xE1  // 冲洗发送 FIFO指令
#define FLUSH_RX        0xE2  // 冲洗接收 FIFO指令
#define REUSE_TX_PL     0xE3  // 定义重复装载数据指令
#define NOP             0xFF  // 保留
#define CONFIG          0x00  // 配置收发状态,CRC校验模式以及收发状态响应方式
#define EN_AA           0x01  // 自动应答功能设置
#define EN_RXADDR       0x02  // 可用信道设置
#define SETUP_AW        0x03  // 收发地址宽度设置
#define SETUP_RETR      0x04  // 自动重发功能设置
#define RF_CH           0x05  // 工作频率设置
#define RF_SETUP        0x06  // 发射速率、功耗功能设置
#define STATUS          0x07  // 状态寄存器
#define OBSERVE_TX      0x08  // 发送监测功能
#define CD              0x09  // 地址检测           
#define RX_ADDR_P0      0x0A  // 频道0接收数据地址
#define RX_ADDR_P1      0x0B  // 频道1接收数据地址
#define RX_ADDR_P2      0x0C  // 频道2接收数据地址
#define RX_ADDR_P3      0x0D  // 频道3接收数据地址
#define RX_ADDR_P4      0x0E  // 频道4接收数据地址
#define RX_ADDR_P5      0x0F  // 频道5接收数据地址
#define TX_ADDR         0x10  // 发送地址寄存器
#define RX_PW_P0        0x11  // 接收频道0接收数据长度
#define RX_PW_P1        0x12  // 接收频道0接收数据长度
#define RX_PW_P2        0x13  // 接收频道0接收数据长度
#define RX_PW_P3        0x14  // 接收频道0接收数据长度
#define RX_PW_P4        0x15  // 接收频道0接收数据长度
#define RX_PW_P5        0x16  // 接收频道0接收数据长度
#define FIFO_STATUS     0x17  // FIFO栈入栈出状态寄存器设置
void Delay(unsigned int s);
void inerDelay_us(unsigned char n);
void init_NRF24L01(void);
uint SPI_RW(uint uchar);
uchar SPI_Read(uchar reg);
void SetRX_Mode(void);
uint SPI_RW_Reg(uchar reg, uchar value);
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);
void nRF24L01_TxPacket(unsigned char * tx_buf);
void Delay(unsigned int s)
{
	unsigned int i;
	for(i=0; i0;n--)
	_nop_();
}
void init_NRF24L01(void)
{
inerDelay_us(100);
 	CE=0;    
 	CSN=1;   
 	SCK=0;   
	SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);
	SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH);
	SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);
	SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);
	SPI_RW_Reg(WRITE_REG + RF_CH, 0);
	SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH);
	SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);   		
}
uint SPI_RW(uint uchar)
{
	uint bit_ctr;
   	for(bit_ctr=0;bit_ctr<8;bit_ctr++) 
   	{
		MOSI = (uchar & 0x80);         
		uchar = (uchar << 1);          
		SCK = 1;                      
		uchar |= MISO;       		  
		SCK = 0;            		  
   	}
    return(uchar);           		  
}
uchar SPI_Read(uchar reg)
{
	uchar reg_val;
	CSN = 0;                
	SPI_RW(reg);            
	reg_val = SPI_RW(0);    
	CSN = 1;                
	return(reg_val);        
}
uint SPI_RW_Reg(uchar reg, uchar value)
{
	uint status;
	CSN = 0;                   
	status = SPI_RW(reg);      
	SPI_RW(value);             
	CSN = 1;                   
	return(status);           
}
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
	uint status,uchar_ctr;
	CSN = 0;                    		
	status = SPI_RW(reg);       		
	for(uchar_ctr=0;uchar_ctr

接收端程序如下:

 

 

#include 
#include 
#include 
typedef unsigned char uchar;
typedef unsigned char uint;
sbit 	MISO=P1^5;
sbit 	MOSI=P1^4;
sbit	SCK=P1^3;
sbit	CE=P1^1;
sbit	CSN=P1^2;
sbit	IRQ=P3^3;
sbit  KEY1=P3^4;   
sbit  KEY2=P3^5;   
sbit  KEY3=P3^6;   
sbit  KEY4=P3^7;   
#define TX_ADR_WIDTH    5   	
#define RX_ADR_WIDTH    5   	
#define TX_PLOAD_WIDTH  20  	
#define RX_PLOAD_WIDTH  20  	
uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//本地地址
uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//接收地址
#define READ_REG        0x00  // 读寄存器指令
#define WRITE_REG       0x20  // 写寄存器指令
#define RD_RX_PLOAD     0x61  // 读取接收数据指令
#define WR_TX_PLOAD     0xA0  // 写待发数据指令
#define FLUSH_TX        0xE1  // 冲洗发送 FIFO指令
#define FLUSH_RX        0xE2  // 冲洗接收 FIFO指令
#define REUSE_TX_PL     0xE3  // 定义重复装载数据指令
#define NOP             0xFF  // 保留
#define CONFIG          0x00  // 配置收发状态,CRC校验模式以及收发状态响应方式
#define EN_AA           0x01  // 自动应答功能设置
#define EN_RXADDR       0x02  // 可用信道设置
#define SETUP_AW        0x03  // 收发地址宽度设置
#define SETUP_RETR      0x04  // 自动重发功能设置
#define RF_CH           0x05  // 工作频率设置
#define RF_SETUP        0x06  // 发射速率、功耗功能设置
#define STATUS          0x07  // 状态寄存器
#define OBSERVE_TX      0x08  // 发送监测功能
#define CD              0x09  // 地址检测           
#define RX_ADDR_P0      0x0A  // 频道0接收数据地址
#define RX_ADDR_P1      0x0B  // 频道1接收数据地址
#define RX_ADDR_P2      0x0C  // 频道2接收数据地址
#define RX_ADDR_P3      0x0D  // 频道3接收数据地址
#define RX_ADDR_P4      0x0E  // 频道4接收数据地址
#define RX_ADDR_P5      0x0F  // 频道5接收数据地址
#define TX_ADDR         0x10  // 发送地址寄存器
#define RX_PW_P0        0x11  // 接收频道0接收数据长度
#define RX_PW_P1        0x12  // 接收频道0接收数据长度
#define RX_PW_P2        0x13  // 接收频道0接收数据长度
#define RX_PW_P3        0x14  // 接收频道0接收数据长度
#define RX_PW_P4        0x15  // 接收频道0接收数据长度
#define RX_PW_P5        0x16  // 接收频道0接收数据长度
#define FIFO_STATUS     0x17  // FIFO栈入栈出状态寄存器设置
void Delay(unsigned int s);
void inerDelay_us(unsigned char n);
void init_NRF24L01(void);
uint SPI_RW(uint uchar);
uchar SPI_Read(uchar reg);
void SetRX_Mode(void);
uint SPI_RW_Reg(uchar reg, uchar value);
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);
void nRF24L01_TxPacket(unsigned char * tx_buf);
uchar flag_0;
uchar flag_1;
unsigned int num;
void Delay(unsigned int s)
{
	unsigned int i;
	for(i=0; i0;n--)
	_nop_();
}
void init_NRF24L01(void)
{
inerDelay_us(100);
 	CE=0;    
	CSN=1;   
 	SCK=0;   
	SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);	
	SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH);	SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);      	
	SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);  
	SPI_RW_Reg(WRITE_REG + RF_CH, 0);       
	SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); 
	SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);   		
}
uint SPI_RW(uint uchar)
{
	uint bit_ctr;
   	for(bit_ctr=0;bit_ctr<8;bit_ctr++) 
   	{
		MOSI = (uchar & 0x80);         
		uchar = (uchar << 1);           
		SCK = 1;                      
		uchar |= MISO;       		  
		SCK = 0;            		  
   	}
    return(uchar);           		  
}
uchar SPI_Read(uchar reg)
{
	uchar reg_val;
	CSN = 0;                
	SPI_RW(reg);            
	reg_val = SPI_RW(0);    
	CSN = 1;                
	return(reg_val);        
}
uint SPI_RW_Reg(uchar reg, uchar value)
{
	uint status;
	CSN = 0;                  
	status = SPI_RW(reg);     
	SPI_RW(value);            
	CSN = 1;                  
	return(status);           
}
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
	uint status,uchar_ctr;
	CSN = 0;                    		
	status = SPI_RW(reg);       		
for(uchar_ctr=0;uchar_ctr=2500)
PWM_Value[0]=2500;
if(PWM_Value[1]>=2500)
PWM_Value[1]=2500;
if(PWM_Value[0]<=500)
PWM_Value[0]=500;
if(PWM_Value[1]<=500)
PWM_Value[1]=500;
switch(order)
{
	case 1:PWM_OUT0=1;
TH0=(65536-PWM_Value[0])>>8;
TL0=(uchar)(65536-PWM_Value[0]);
break;                                
case 2:PWM_OUT0=0;
TH0=(65536-(5000-PWM_Value[0]))>>8;
TL0=(uchar)(65536-(5000-PWM_Value[0]));
break;                                					
case 3:PWM_OUT1=1;
TH0=(65536-PWM_Value[1])>>8;
TL0=(uchar)(65536-PWM_Value[1]);
break;
case 4:PWM_OUT1=0;
TH0=(65536-(5000-PWM_Value[1]))>>8;
TL0=(uchar)(65536-(5000-PWM_Value[1]));
break;
case 5:
TH0=60536>>8;
TL0=(uchar)60536;
break;
case 6:
TH0=60536>>8;
TL0=(uchar)60536;
order=0;
break;
default: order=0;
break;
        }
order++;
}



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
单片机按键切换下一首歌