单片机 > 单片机程序设计 > 详情

单片机编程之汇编语言基础-PIC单片机汇编指令

发布时间:2021-04-26 发布时间:
|

1、 程序的基本格式

先介绍二条伪指令:

EQU ——标号赋值伪指令

ORG ——地址定义伪指令

PIC16C5X在RESET后指令计算器PC被置为全“1”,所以PIC16C5X几种型号芯片的复位地址为:

PIC16C54/55:1FFH

PIC16C56:3FFH

PIC16C57/58:7FFH

一般来说,PIC的源程序并没有要求统一的格式,大家可以根据自己的风格来编写。但这里我们推荐一种清晰明了的格式供参考。

TITLE This is …… ;程序标题

;--------------------------------------

;名称定义和变量定义

;--------------------------------------

F0    EQU  0

RTCC   EQU  1

PC    EQU  2

STATUS  EQU  3

FSR   EQU  4

RA    EQU  5

RB    EQU  6

RC    EQU  7

PIC16C54 EQU 1FFH ;芯片复位地址

PIC16C56 EQU 3FFH

PIC16C57 EQU 7FFH

;-----------------------------------------

ORG PIC16C54 GOTO MAIN   ;在复位地址处转入主程序

ORG   0          ;在0000H开始存放程序

;-----------------------------------------

;子程序区

;-----------------------------------------

DELAY MOVLW 255

RETLW 0

;------------------------------------------

;主程序区

;------------------------------------------

MAIN

MOVLW B‘00000000’

TRIS RB       ;RB已由伪指令定义为6,即B口

LOOP

BSF RB,7 CALL DELAY

BCF RB,7 CALL DELAY

GOTO LOOP

;-------------------------------------------

END       ;程序结束

注:MAIN标号一定要处在0页面内。


2、程序设计基础


1) 设置 I/O 口的输入/输出方向

PIC16C5X的I/O 口皆为双向可编程,即每一根I/O 端线都可分别单独地由程序设置为输入或输出。这个过程由写I/O 控制寄存器TRIS f来实现,写入值为“1”,则为输入;写入值为“0”,则为输出。

MOVLW 0FH  ;0000 1111(0FH)

输入 输出

TRIS 6    ;将W中的0FH写入B口控制器,

;B口高4位为输出,低4位为输入。

MOVLW 0C0H ; 11 000000(0C0H)

RB4,RB5输出0 RB6,RB7输出1


2) 检查寄存器是否为零

如果要判断一个寄存器内容是否为零,很简单,现以寄存器F10为例:

MOVF 10,1      ;F10→F10,结果影响零标记状态位Z

BTFSS STATUS,Z    ;F10为零则跳

GOTO NZ        ;Z=0即F10不为零转入标号NZ处程序

┋          ;Z=1即F10=0处理程序


3) 比较二个寄存器的大小

要比较二个寄存器的大小,可以将它们做减法运算,然后根据状态位C来判断。注意,相减的结果放入W,则不会影响二寄存器原有的值。

例如F8和F9二个寄存器要比较大小:

MOVF 8,0       ;F8→W

SUBWF 9,0      ;F9—W(F8)→W

BTFSC STATUS,Z    ;判断F8=F9否

GOTO F8=F9

BTFSC STATUS,C    ;C=0则跳

GOTO F9>F8       ;C=1相减结果为正,F9>F8

GOTO F9<

F9       ;C=0相减结果为负,F9


4) 循环n次的程序

如果要使某段程序循环执行n次,可以用一个寄存器作计数器。下例以F10做计数器,使程序循环8次。

COUNT EQU 10     ;定义F10名称为COUNT(计数器)

MOVLW 8

MOVWF COUNT LOOP   ;循环体

LOOP

DECFSZ COUNT,1    ;COUNT减1,结果为零则跳

GOTO LOOP       ;结果不为零,继续循环

┋       ;结果为零,跳出循环


5)“IF……THEN……”格式的程序

下面以“IF X=Y THEN GOTO NEXT”格式为例。

MOVF X,0      ;X→W

SUBWF Y,0     ;Y—W(X)→W

BTFSC STATUS,Z   ;X=Y 否

GOTO NEXT      ;X=Y,跳到NEXT去执行。

┋       ;X≠Y


6)“FOR……NEXT”格式的程序

“FOR……NEXT”程序使循环在某个范围内进行。下例是“FOR X=0 TO 5”格式的程序。F10放X的初值,F11放X的终值。

START  EQU  10

DAEND  EQU  11

MOVLW 0

MOVWF START     ; 0→START(F10)

MOVLW 5

MOVWF DAEND     ;5→DAEND(F11)

LOOP

INCF START,1     ;START值加1

MOVF START,0

SUBWF DAEND,0     ;START=DAEND ?(X=5否)

BTFSS STATUS,Z

GOTO LOOP        ;X<5,继续循环

┋                ;X=5,结束循环


7)“DO WHILE……END”格式的程序

“DO WHILE……END”程序是在符合条件下执行循环。下例是“DO WHILE X=1”格式的程序。F10放X的值。

X  EQU  10

MOVLW  1

MOVWF  X     ;1→X(F10),作为初值

LOOP

MOVLW 1

SUBWF X,0

BTFSS STATUS,Z   ;X=1否?

GOTO LOOP      ;X=1继续循环

┋           ;X≠1跳出循环


8) 查表程序

查表是程序中经常用到的一种操作。下例是将十进制0~9转换成7段LED数字显示值。若以B口的RB0~RB6来驱动LED的a~g线段,则有如下关系:

设LED为共阳,则0~9数字对应的线段值如下表:

十进数 线段值 十进数 线段值

0 C0H 5 92H

1 C9H 6 82H

2 A4H 7 F8H

3 B0H 8 80H

4 99H 9 90H


PIC的查表程序可以利用子程序带值返回的特点来实现。具体是在主程序中先取表数据地址放入W,接着调用子程序,子程序的第一条指令将W置入PC,则程序跳到数据地址的地方,再由“RETLW”指令将数据放入W返回到主程序。下面程序以F10放表头地址。


MOVLW  TABLE     ;表头地址→F10

MOVWF  10

MOVLW  1        ;1→W,准备取“1”的线段值

ADDWF  10,1      ;F10+W =“1”的数据地址

CALL  CONVERT

MOVWF  6        ;线段值置到B口,点亮LED

CONVERT MOVWF  2   ;W→PC TABLE

RETLW  0C0H      ;“0”线段值

RETLW  0F9H      ;“1”线段值

RETLW  90H       ;“9”线段值

9)“READ……DATA,RESTORE”格式程序


“READ……DATA”程序是每次读取数据表的一个数据,然后将数据指针加1,准备取下一个数据。下例程序中以F10为数据表起始地址,F11做数据指针。


POINTER  EQU  11   ;定义F11名称为POINTER

MOVLW   DATA

MOVWF   10     ;数据表头地址→F10

CLRF   POINTER   ;数据指针清零

MOVF   POINTER,0

ADDWF 10,0      ;W =F10+POINTER

INCF    POINTER,1  ;指针加1

CALL CONVERT      ;调子程序,取表格数据

CONVERT MOVWF   2    ;数据地址→PC

DATA  RETLW   20H    ;数据

RETLW 15H      ;数据

如果要执行“RESTORE”,只要执行一条“CLRF POINTER”即可。


10) 延时程序

如果延时时间较短,可以让程序简单地连续执行几条空操作指令“NOP”。如果延时时间长,可以用循环来实现。下例以F10计算,使循环重复执行100次。


MOVLW D‘100’

MOVWF 10

LOOP  DECFSZ 10,1   ;F10—1→F10,结果为零则跳

GOTO LOOP


延时程序中计算指令执行的时间和即为延时时间。如果使用4MHz振荡,则每个指令周期为1μS。所以单周期指令时间为1μS,双周期指令时间为2μS。在上例的LOOP循环延时时间即为:(1+2)*100+2=302(μS)。在循环中插入空操作指令即可延长延时时间:

MOVLW  D‘100’

MOVWF  10

LOOP   NOP

NOP

NOP

DECFSZ 10,1

GOTO LOOP

延时时间=(1+1+1+1+2)*100+2=602(μS)。

用几个循环嵌套的方式可以大大延长延时时间。下例用2个循环来做延时:

MOVLW   D‘100’

MOVWF   10

LOOP  MOVLW   D‘16’

MOVWF   11

LOOP1  DECFSZ   11,1

GOTO    LOOP1

DECFSZ   10,1

GOTO LOOP

延时时间=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)


11) RTCC计数器的使用

RTCC是一个脉冲计数器,它的计数脉冲有二个来源,一个是从RTCC引脚输入的外部信号,一个是内部的指令时钟信号。可以用程序来选择其中一个信号源作为输入。RTCC可被程序用作计时之用;程序读取RTCC寄存器值以计算时间。当RTCC作为内部计时器使用时需将RTCC管脚接VDD或VSS,以减少干扰和耗电流。下例程序以RTCC做延时:

RTCC  EQU  1

CLRF  RTCC    ;RTCC清0

MOVLW  07H

OPTION    ;选择预设倍数1:256→RTCC

LOOP  MOVLW  255   ;RTCC计数终值

SUBWF  RTCC,0

BTFSS STATUS,Z   ;RTCC=255?

GOTO LOOP


这个延时程序中,每过256个指令周期RTCC寄存器增1(分频比=1:256),设芯片使用4MHz振荡,则:

延时时间=256*256=65536(μS)

RTCC是自振式的,在它计数时,程序可以去做别的事情,只要隔一段时间去读取它,检测它的计数值即可。


12) 寄存器体(BANK)的寻址

对于PIC16C54/55/56,寄存器有32个,只有一个体(BANK),故不存在体寻址问题,对于PIC16C57/58来说,寄存器则有80个,分为4个体(BANK0-BANK3)。在对F4(FSR)的说明中可知,F4的bit6和bit5是寄存器体寻址位,其对应关系如下:

Bit6  Bit5 BANK 物理地址

0    0 BANK0 10H~1FH

0    1 BANK1 30H~3FH

1    0 BANK2 50H~5FH

1    1 BANK3 70H~7FH


当芯片上电RESET后,F4的bit6,bit5是随机的,非上电的RESET则保持原先状态不变。

下面的例子对BANK1和BANK2的30H及50H寄存器写入数据。


例1.(设目前体选为BANK0)

BSF   4,5    ;置位bit5=1,选择BANK1

MOVLW  DATA

MOVWF  10H    ; DATA→30H

BCF   4,5

BSF   4,6   ;bit6=1,bit5=0选择BANK2

MOVWF  10H    ;DATA→50H


从上例中我们看到,对某一体(BANK)中的寄存器进行读写,首先要先对F4中的体寻址位进行操作。实际应用中一般上电复位后先清F4的bit6和bit5为0,使之指向BANK0,以后再根据需要使其指向相应的体。


注意,在例子中对30H寄存器(BANK1)和50H寄存器(BANK2)写数时,用的指令“MOVWF 10H”中寄存器地址写的都是“10H”,而不是读者预期的“MOVWF 30H”和“MOVWF 50H”,为什么?

让我们回顾一下指令表。在PIC16C5X的所有有关寄存器的指令码中,寄存寻址位都只占5个位:fffff,只能寻址32个(00H—1FH)寄存器。所以要选址80个寄存器,还要再用二位体选址位PA1和PA0。当我们设置好体寻址位PA1和PA0,使之指向一个BANK,那么指令“MOVWF 10H”就是将W内容置入这个BANK中的相应寄存器内(10H,30H,50H,或70H)。


有些设计者第一次接触体选址的概念,难免理解上有出入,下面是一个例子:

例2:(设目前体选为BANK0)

MOVLW  55H

MOVWF  30H   ;欲把55H→30H寄存器

MOVLW  66H

MOVWF  50H   ;欲把66H→50H寄存器


以为“MOVWF 30H”一定能把W置入30H,“MOVWF 50H”一定能把W置入50H,这是错误的。因为这两条指令的实际效果是“MOVWF 10H”,原因上面已经说明过了。所以例2这段程序最后结果是F10H=66H,而真正的F30H和F50H并没有被操作到。


建议:为使体选址的程序清晰明了,建议多用名称定义符来写程序,则不易混淆。

例3:假设在程序中用到BANK0,BANK1,BANK2的几个寄存器如下:

BANK0 地址 BANK1 地址 BANK2 地址 BANK3 地址

A 10H B 30H C 50H · 70H

· · · · · · · ·

· · · · · · · ·

A   EQU  10H   ;BANK0

B   EQU  10H   ;BANK1

C   EQU  10H   ;BANK2

FSR  EQU  4

Bit6  EQU  6

Bit5  EQU  5

DATA  EQU  55H

MOVLW  DATA

MOVWF  A

BSF   FSR,Bit5

MOVWF  B     ;DATA→F30H

BCF   FSR,Bit5

BSF   FSR,Bit6

MOVWF C


关键字:单片机编程  汇编语言基础  汇编指令

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
PIC单片机基础知识之二