×
单片机 > 单片机系统 > 详情

简易实用模拟温控电路设计

发布时间:2024-05-21 发布时间:
|

  温度控制系统被广泛应用于工业、农业、医疗等行业的仪器设备中,目前应用最多的是单片机或微机系统设计的温度控制系统。系统硬件部分由输人输出接口、中央处理单元、A/D转换、定时计数等集成模块组成,系统软件部分需要用运算量大的PID算法编程实现,整套控制系统设计及实现较为复杂和繁琐。由分立元件组成的模拟型电路信号输入、放大、运算及控制输出都由硬件电路完成,不需要软件设计。与数字电路相比,其设计及实现过程更为简便,所以采用简易实用的模拟电路实现温控电路的设计。

  1温控总电路组成

  温控电路主要由电源部分、温度检测元件、信号放大、比例积分、电压比较、移相触发控制继电器、超温保护、加热炉和LED显示几部分组成,其电路结构如图1所示。

  图1温控系统电路组成图

  由温度检测元件可以检测到温度值信号,该信号经过放大后输送至比例积分电路并与温度设定电压比较,比较结果输送至相触发电路产生可变周期的脉冲以触发固态继电器中可控硅导通角,从而可控制加热装置的加热功率,达到控制温度的目的。温度补偿电路减少室温对温度测量准确度的影响;超温保护电路可以保证在加热温度超过设定值时,装置停止加热,起到保护设备的作用。

  2各分电路设计

  2.1电源电路

  温控电路中需要直流电压的器件为运算放大器及电子信息显示模块。该电压由220V交流电压经整流滤波后加。至三端稳压器输出得到。其电路如图2所示。

  图2电源电路图

  2.2输入温度信号放大及温度补偿电路

  用感温元件镍硌一镍铬K型热电偶作温度传感器来采集温度信号,温度信号为mV级,实际测量时需经过放大处理。热电偶测量温度信号受工作端温度和自由端环境温度影响,所以测量中需要加补偿信号消除环境温度变化对温度测量的影响。具体电路如图3所示。

  图3信号放大及温度补偿电路

  2.3超温保护电路

  以将功率为60w将加热装置加热至750℃为例,图3中温度信号经过放大100倍后加到比例积分电路并与温度设定电压比较,比较结果输送相触发电路产生可变周期脉冲以触发固态继电器。为避免加热温度过高设置超温保护电路,在温度过高时切断加热电压。具体电路如图4所示。

  图4比例积分、电压比较、移相触发及超温保护电路

  3设计验证

  3.1电源电路验证

  图2设计220V交流电压经变压器变压至整流桥T1、T2,整流为直流电压,直流电压经电容滤波后输入三端稳压器及稳压二极管,输出±12V、±6V及5V电压。±12V电压为运算放大器工作电压;±6V为偏置电压;5V电压供LED显示用。其测量值表1所示。

  从测试结果来看,实测电压与设计电压绝对误差在±0.1V之间,完全满足电路工作需要。

  3.2温度信号放大及温度补偿电路验证

  图3是一个差分放大电路,放大器采用ICL7650,反馈网络电阻比R11/R8为100,即温度毫伏电压信号被放大100倍。输入温度电压毫伏信号为TC+与TC一端电压差,TC一端R:为一负温度系数热敏电阻,当工作端温度变化,热电偶产生的热电势也将变化,而此时热敏电阻阻值也将减少并使TC一端电压的电压也发生变化。这样总的差分输人信号随温度变化被抵消。如果参数选择合适可消除自由端温度变化对热电偶温度测量的影响。

  图中CT取自放大以后的温度毫伏信号,通过改变R13与R14及W2比例可取适当电压信号与温度值对应,该电压信号接至3位半LED显示表可显示测量温度值。

  表2为温度采集模块输出测试数据,由国标K型热电偶与电势对应关系表可得到热电偶理论输出电势,实验测试在不同室温及测量温度时,温度采集模块输出端实测电压是否符合设计要求。由测试数据来看,通过温度采集模块,被测温度电势信号经过室温补偿后,被准确放大100倍。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
80C51的复位技术大盘点