模拟电路设计 > 详情

基于NiosII的便携式超声波流量计设计

发布时间:2020-10-15 发布时间:
|

摘要:介绍了便携式超声波流量计的工作原理和系统硬件结构,分析了系统收发电路各个模块的设计,着重介绍了基于FPGA软核NioslI的便携式超声波流量计的数字电路部分设计。试验结果表明,系统工作稳定,能够满足测量精度要求,并且减小了便携式超声波流量计的体积,降低了产品成本。
关键词:便携式超声波流量计;SOPC;NioslI

引言
超声波流量计是随着IC技术迅速发展而开始得到实际应用的一种非接触式仪表。它是一种利用声学原理工作的新型流量测量仪表。与传统流量计(如孔板、涡轮流量计等)相比,它具有测量准确度几乎不受介质温度、压力影响等优点,尤其是在大管径流量测量方面,其优越性更加明显,因此得到了越来越广泛的应用。
近年来,随着Altera公司32位软核CPU NiosII的推出,基于FPGA的SOPC(System On a Programmable Chip)技术发展越来越快。SOPC是可编程系统,具有灵活的设计方式,并且可裁剪,可扩充,可升级,同时具备软硬件在线系统可编程的功能。SOPC兼具PLD和FPGA的优点,它的特点包括:至少包含一个嵌入式处理器内核;具有小容量片内高速RAM资源;有足够的片上可编程逻辑资源;有处理器调试接口和FPGA编程接口;可能包含部分可编程模拟电路;单芯片,低功耗,微封装。正是基于这些优点,基于NiosII的SOPC得到了越来越广泛的应用。
本文就是基于超声波以及SOPC这两项技术来设计便携式的超声波流量计,充分发挥这两项技术的优点,实现对液体、气体的高精度测量。

1 工作原理及系统组成
本系统利用时差法进行流速测量:安装于被测容器顶部的收发一体的超声波换能器(A或B)通过空气向被测物体发射一束超声波,该声波经被测物体反射后,回波被换能器(B或A)接收并被转换为电信号。原理图如图1所示。


这样,在已知安装角度θ和管径D的条件下,测量A到B的传播时间tAB以及从B到A的传播时间tBA,通过计算可得

这种算法只需测出tAB与tBA就可以得到流速V,而通过对流速进行积分运算就可以进一步算得流量,这就是时差法测量流速的基本原理。
整个便携式超声波流量计系统组成如图2所示。系统由脉冲发射电路、回波接收电路、信号处理电路和CPU控制电路组成。脉冲发射电路是输出一定超声波频率的脉冲激励信号经功率放大和升压后驱动超声波换能器发射超声波;回波接收电路即是接收回波信号;信号处理电路用于对回波信号进行放大、带通滤波、自动增益控制、电压比较等处理;CPU控制电路控制发射信号、控制模拟开关、捕获计时、数据处理及与外部设备通信。

2 模拟电路部分设计
2.1 超声波前端驱动电路
如图2所示,超声波换能器驱动电路产生一个具有特定频率、脉冲宽度和输出功率的电脉冲去激励超声波换能器,进而产生超声波向外发射。对于超声波换能器,超声波换能器驱动电路提供的功率越大,超声波换能器将电能转换为声能的效果越好,所以超声波换能器驱动电压应该越大越好,但需要注意驱动电压压值不能超过换能器压降极限。本系统应用晶体管组成推挽式电路结合场效应管电路来实现功率放大。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
模拟电路板调试前的准备工作