×
模拟电子 > 模拟电路设计 > 详情

5G天线的主力是MIMO还是大规模MIMO电路设计方案?

发布时间:2021-04-19 发布时间:
|

MIMO与大规模MIMO

要实现5G的前景,需要在基站的建设方式上做出重大创新。目前,主要依靠多输入多输出(即MIMO)天线配置来成倍增加无线基站天线链路的容量。这些天线能够将信号强度集中到较小的空间区域,通过将信号准确导向所需位置来提高总体效率和吞吐量。通过添加额外的天线,可提高这种波束成形能力。

传统基站可容纳两根到八根天线,而5G基站需要在“大规模MIMO”配置中排列64到数百根天线,以便提供必要的数据速率。这种相控阵天线设计包括一个有源相控阵(AESA),能够以电子方式操纵信号,其精度显著高于MIMO如今可以支持的波束成形精度。

高性能、低成本的有源天线

就大规模MIMO 5G系统的架构和装配而言,它们与专用于军用和民用空中交通管制和天气系统跟踪应用的新一代多功能相控阵雷达(MPAR)有源天线系统具有很多相近之处。通常我们不会将这类雷达系统与5G等成本敏感型商业应用相关联,MPAR技术利用设计和制造效率极大降低了最终系统的成本。

第一代MPAR系统在由成百上千个有源天线组成的平面配置中采用了可缩微平面阵列(SPAR™)片。 通信半导体MACOM和麻省理工学院林肯实验室合作开发的SPAR片技术凭借高度集成的天线子系统以及大规模商业级封装和制造技术,提供了成本敏感型的全新相控阵雷达系统开发方法。

片式AESA为新一代高性能灵敏型雷达系统奠定了基础,此系统可快速构建、灵活定制和扩展,支持在各种应用中部署,成本比传统缝隙阵列架构低5倍。MPAR等相控阵技术的持续创新有助于充分实现5G技术的前景,助力基站OEM简化设计和制造流程,加快5G技术的上市速度。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
压力引入的突发噪声:陶瓷电容器中的颤噪