×
研发技术 > 嵌入式 > 详情

嵌入式设计:Linux通信中构件技术应用研究

发布时间:2021-11-19 发布时间:
|

  1 引言

  现今较为流行的操作系统Linux,本着开放、自由的精神吸引了全世界的目光,但将它应用于嵌入式实时环境还有许多缺点。特别是在运行内核线程时,Linux 关闭中断,而且分时调度虚拟文件系统的时间不确定性、缺乏高精度的计时器等问题都是需要解决的,所以在Linux 上进行实时改进,建立具有实时应用能力的操作系统是现代嵌入式操作系统的解决方案,也日益成为人们关注的课题。

  目前,大多数嵌入式设备都具有存储容量小、处理速度慢和网络应用单一等特点,在这样的嵌入式系统中应用传统的单块式网络协议栈就存在问题:一是如果协议栈中某个子协议功能需要升级,就要升级整个协议栈甚至重新编译全部内核文件,工作流程复杂;二是协议栈不够灵活,不能根据嵌入式系统对网络通信的实际需求配置其内容。

  2 构件技术介绍

  早在60 年代,“软件构件”与“软件组装生产线”思想在国际北大西洋公约组织软件工程会议上被提出来,从此,采用构件技术实现软件复用,采用“搭积木”的方式生产软件,成为软件业长期的梦想。然而,由于技术水平的限制,在很长一段时间内,构件技术只是作为一种思想存在,直到CORBA 、J2EE、.NET 出现,中间件兴起以后,构件技术才逐渐走向现实。

  构件最大的特点是可以不断复用、降低成本、缩短开发周期。从构件技术的实现来看,它规定了一种普遍使用的抽象“标准”,即规定了一组相同的结构类接口来实现动态交流。通信协议引入构件技术设计,可提供代码的可重用性,使程序开发周期缩短,分工更加明细,使整个协议体系具备了更好的可配置性、高效性、可重用性、可扩展性和可表达性。从而解决了网络通信中存在的四个基本问题:基本的构件互操作性、协议版本升级、实现语言无关性、透明的跨进程互操作性。

  软件构件技术是建立在面向对象技术之上的,它提供了比面向对象技术更为高级的抽象,通常是对一组类进行封装,通过固定的接口来调用该构件所提供的方法。构件技术成为了嵌入式操作系统和嵌入式应用软件的发展趋势。利用构件技术把单块式的网络协议分割成多个独立的构件,每一个构件都可以被新的构件更新、替换,一组相关的构件提供特定的服务。因此,系统就可以通过选择相应的网络协议构件进行组装来通信。

  通信协议构件化

  随着嵌入式系统与网络的日益结合,在嵌入式实时操作系统中引入TCP/IP 协议栈,以支持嵌入式设备接入网络,成为嵌入式领域重要的研究方向。但是传统的TCP/IP 协议实现存在实时性能较差,不能满足实时性要求高的嵌入式领域;传统TCP/IP 的实现过于复杂,需占用大量系统资源,而嵌入式应用的系统资源往往都很有限;传统的TCP/IP 协议系统是基于单块式体系结构的,即嵌入式实时操作系统中引入的协议是以单块方式设计并加以实现的,随着网络技术的不断发展,以及一些新应用不断增长和变化的要求,这种通用的单块式结构的协议往往不能满足需求。因此,需要把传统TCP/IP 在不违背协议标准的前提下加以改进实现,使其实时性得到提高,占用的存储空间尽可能少,从而满足嵌入式应用的要求。

  Linux 可针对用户的需求,动态载入和卸载操作系统构件,这种模块化机制为通信协议构件化提供了前提条件。用户可以根据需要,在不对内核重新编泽的情况下,能将模块动态地载入内核或从内核移出,内核可以仅实现一些基本功能,系统的可扩展性功能就留给模块来完成,从而使内核的大小和通讯量都达到最小。因此,在Linux 中实现协议构件化可以依赖模块化机制,协议构件由Linux 模块来实现,模块能动态地载入内核或从内核移出,而不需要对内核重新编译。

  本文针对嵌入式服务器的网络实时通信的应用,以经过实时改进和裁剪的Linux 操作系统作为协议构件化的平台,对的TCP/IP 协议栈进行构件化。

  1 通信协议构件化原理

  2 通信协议分解

  为了使协议构件具备动态链接、信息封装、统一接口等特性,首先要合理分解通信协议,这关系到通信协议构件的粒度。从粒度上来看,构件的粒度越小,协议划分越细,协议构件越多;构件粒度越大,协议划分越粗,协议构件越少。

  协议构件粒度的大小,决定了协议构件模块化、信息封装性、局部化的程度,为此必须保证协议构件的独立性。一旦构件具备良好的独立性,建立在协议构件之上的应用程序构件就更容易开发,接口也会简化;独立的模块也比较容易测试与维护,修改工作量小,错误传播范围小。如果粒度过小,虽然协议构件独立性增强,但是构件的接口就增加了,给构件的组合、构件的管理带来了很多的困难。如果粒度过大,构件的尺度增加,独立性降低,各个构件之间的关联度也会增加,不利于构件的动态替换与更新。

  粒度的大小可以用两个定性标准来衡量,分别是内聚和耦合。耦合衡量不同构件彼此之间相互依赖的紧密程度;内聚衡量一个协议构件内部各个元素彼此结合的紧密程度。在对协议进行构件化的时候,采取的策略应当尽量使协议构件之间的耦合度降低,独立性增强,加强内聚性。

  目前对构件的粒度还没有统一的要求,由于构件是一个高内聚的软件包,只要符合高内聚的原则,则构件的粒度大小可不限。

  3.1.2 通信协议构件化方法

  由上节可知,通信协议分解没有统一的要求,所以,可以从多个角度对通信协议进行构件化。例如,按构件的功能可进行基本协议构件、通用协议构件、对各领域的专用协议构件或子系统协议构件化;按构件的使用方式可进行静态的和动态的构件化;按构件的结构可进行原子构件及由多个构件*的组合构件化;按协议栈的分层结构可进行层次构件化。本文以Linux 下的TCP/IP 协议层次结构(如图1 所示)为基础,按层次构件化。即将ARP、IP、ICMP、UDP、TCP 协议从Linux 内核中分离出来,按每个协议完成的功能划分成不同的模块,每个模块作为一个构件。每个构件用一个指针函数实现,这样,一个基于嵌入式Linux 的应用系统在内核启动时可按需求动态组装协议功能,形成不同配置通信协议栈,显示了系统网络通信的灵活性。

 

  考虑到TCP 协议是面向连接的、端对端的可靠通信协议,为保证远程客户端与本地嵌入式系统服务器的正确通信,采取了相应机制来保证它的可靠性和实时性,即连接的建立与关闭、超时重传机制、数据包确认机制、流量控制等。因此,将TCP 协议按应用功能划分成客户端模块和服务器端模块,前者主动建立连接,后者*连接,连接建立后双方进行数据信息的发送或接收。

  相对于TCP 协议,ARP、IP、ICMP、UDP 等协议功能较简单,对它们不划分模块,每个协议按其完成的功能设计成一个构件,但考虑到嵌入式系统的实时性,去掉了不必要的功能。UDP 协议设计时不考虑数据校验方法,只考虑数据的发送和接收功能。ICMP 协议设计时仅考虑了目的端不可达、源端抑制、超时、改变路由等差错和回送请求处理。IP 协议设计时主要进行路由、向相邻协议层传递数据包,而不考虑分片、重装功能。ARP 协议主要负责将局域网中的32 位IP 地址转换为对应的网卡的MAC 地址,它的功能包括发送ARP 请求和响应对方的ARP 请求,动态维护一个ARP 高速缓存。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
Python学习要点:自定义序列实现切片功能