×
嵌入式 > 嵌入式开发 > 详情

无线应用:Zynq All Programmable SoC的OS选择考虑因素

发布时间:2020-06-18 发布时间:
|

随着无线数据吞吐量的爆炸式增长,数字信号处理技术和无线电设备在改进方面面临着巨大压力。目前的重点放在4G LTE。4G网络正在世界各地大规模部署。而且现在我们看到5G网络的早期研发工作也已经展开,其目标是在4G网络的基础上将数据容量再提升上千倍。这种新兴的技术发展给系统厂商提出了不断发展变化的新要求——他们必须提升系统集成度和系统性能,降低系统材料清单(BOM)成本,提高设计灵活性,并加速产品上市进程等。

传统ASIC器件支持的硬件解决方案虽然可以实现功耗和成本目标,但偶生工程成本(NRE)极高、灵活性差且产品上市进程非常缓慢。为了满足这些要求并应对这些挑战,赛灵思向行业推出了All Programmable SoC(APSoC)架构,并将其成功实现在Zynq-7000产品系列中。

Zynq-7000器件采用赛灵思APSoC架构并通过硬件、软件和I/O可重编程功能可实现更大的系统级差异化、更高的集成度和灵活性(图1)。Zynq-7000器件自2011年12月推出以来,已广泛应用于通信、数据中心、汽车、工业、航空航天与国防等众多市场领域。对通信市场(尤其是无线应用领域)而言,Zynq-7000带来了独特的优势:其集成式可编程逻辑(PL)专门针对数字信号处理进行了精心优化;其ARM Cortex A9处理子系统(PS)能够高效实现典型无线设备(例如远端射频单元和无线回程单元)的控制功能。

图1:Zynq-7000 All Programmable SoC架构

在构建基于Zynq APSoC器件的无线应用时,必须选择能满足应用需求的操作系统。为此,针对不同的无线应用,需要考虑几个关键因素:

1. 电信级运营能力:对电信级系统,一般要求系统可靠性达到99.999%。单元在正常工作时间可靠性必须达到这么高。从运营的角度讲,它代表对系统各项特性的支持,比如冷/热启动、故障监测、检测和处理以及冗余。

2. 实时处理:实时意味着可预测的响应时间,而不仅仅是“非常快”。远端射频单元与无线回程处理相比有不同的实时要求。无线电设备信号处理任务重,用于支持信号处理的处理器必须满足严格的时序预算要求。

3. 诊断:为支持现场诊断和事后诊断,需要采集和存储大量性能测量数据和日志数据。因此应具备跟踪和管理对无线应用具有重要意义的部分关键指标的能力,比如性能衡量与统计指标、CPU利用率和故障监控指标、OS任务切换指标和事件历史指标等。

4. 工具和协议集成:调试与诊断环境全面集成,加上部分OS厂商提供的一些特定的网络协议栈,有助于设计人员开发和维护有效的系统。

Zynq SoC集成有两个ARM Cortex A9内核。软件架构师需要在目前支持的两种多处理器架构之间做出选择:SMP(对称多处理)或AMP(非对称多处理)。如图2所示,在SMP系统架构中,两个或更多完全相同的处理器共享资源,运行一个OS实例。理论上,这种架构在同一OS实例下将平等对待所有处理器。与相反之,AMP架构会区别对待每个处理器,不管是否有OS实例,处理器之间也彼此隔离。没有运行OS的内核可能在运行一段被视为“裸机”实例的微代码。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
内核日志及printk结构浅析