×
嵌入式 > 嵌入式开发 > 详情

苹果自主芯片 Mac 不仅仅是一个处理器

发布时间:2021-03-26 发布时间:
|

从在今年年底开始,苹果准备为其历史悠久的 Mac 计算平台推出一个引人注目的新架构。这款基于 ARM 架构、自主研发的新处理器将对 Mac 的未来产生重大影响,甚至帮助苹果构建比 Mac 更庞大的非英特尔新平台。

在过去的 40 年里,苹果采取了一系列激进举措,将其 Mac 硬件转向完全不同的全新芯片架构。其他任何计算平台都没有如此成功地完成过这样复杂的转变,更不用说尝试像苹果那样在 Mac 上进行三次重大变革了。从 20 世纪 80 年代的摩托罗拉 68000 到 90 年代的 PowerPC,再到 21 世纪初的英特尔 x86。

每次迁移都需要付出巨大的努力,不仅要交付新的硬件,还要改造庞大的软件平台并创建新的开发工具,以最大限度地减轻用户和开发者向新平台过渡的痛苦。当苹果在 90 年代初迁移到 PowerPC 时,当时的其他平台也在进行并行转变,包括微软的 Windows NT、IBM 的 OS/2、Commodore Amiga 和许多其他平台。

然而,苹果成功完成向 PowerPC 转变的独特能力,却因其他公司未能做到这一点而变得复杂,最终导致苹果成为 PowerPC 芯片唯一的主要用户。这种转变的难度及其意想不到的结果可能表明,事后看来,尝试一项如此复杂、风险如此突出的任务最终是个错误。

另一方面,苹果在大约 10 年后转向英特尔,这在当时被誉为高明的战略举措,使苹果得以进入新市场,并最终戏剧性地扩展其 Mac 平台。不过苹果之所以从 2006 年开始转向英特尔芯片,这在很大程度上是因为该公司之前的 PowerPC 经验,即学习如何执行这样的过渡。

Apple Silicon 转型十年

那么对苹果来说,今年再次转向全新芯片架构有什么好处呢?这一次,苹果使用自主设计的定制芯片架构,而不是购买任何个人电脑制造商都能买到的现成芯片。

从很多方面来说,这家电脑制造商转向新的 Apple Silicon 并不是什么新鲜事儿。自 2008 年以来,该公司始终在开发定制芯片,并最终设计出 A4 芯片,用于 iPhone 4、初代 iPad 以及第一款基于 iOS 的 Apple TV 上。

从 2016 年开始,苹果开始推出配备 T1 的 Mac 电脑。T1 是一款定制芯片,旨在处理 Touch ID 安全事宜,并提供系统管理控制器 (SMC)功能,将苹果的英特尔 Mac 电脑与商用英特尔 PC 电脑区分开来。甚至在 T1 之前,苹果定制的 SMC 微控制器就可以管理 Mac 的电源管理、电池充电、睡眠和休眠、视频显示模式以及其他定制和增强 Mac 体验的功能。

图:苹果的 T2 芯片

自 2017 年以来,新的 Mac 配备了更先进的 T2 芯片。这款 64 位芯片可以处理从磁盘加密到图像处理等各种任务,支持从 iPad Sidecar 到 “Hey Siri”的各种功能。在过去的几年中,T2 Mac 实际上已经变成了 Apple Silicon Mac,配备了提供本地 x86 软件兼容性的英特尔处理器。

Mac 电脑如何迷上英特尔芯片

苹果的英特尔 Mac 目前使用与运行 Windows 或 Linux 的行业标准 PC 相同的 Intel x86 芯片架构。事实上,如今的 Mac 电脑之所以能如此容易地运行 Windows 软件或 Linux 服务器实例,本质上就是英特尔芯片的功劳。这种共性和兼容性最初被吹捧为苹果在 2006 年转向英特尔芯片的主要原因。

在这种转变之前,苹果 Mac 电脑使用的 PowerPC 芯片可能比 x86 芯片拥有许多技术优势。然而,由于经济因素,PowerPC 越来越难以跟上竞争对手 x86 开发的步伐。到 2004 年,苹果是仅存的使用 PowerPC 芯片的重要供应商。台式机领域的其余商家在很大程度上集中在英特尔的 x86 芯片上,这创造了巨大的规模经济,支持英特尔继续投资于其未来几代 x86 芯片。

由于 Mac 电脑的销量增长缓慢,而且对 PowerPC 芯片的需求没有增长的余地,PowerPC 架构背后的制造合作伙伴缺乏任何类似的可靠资金支持,无法与英特尔持续不断的芯片开发努力相媲美。

开发新一代芯片是一项极其昂贵的工作,单靠一家每年仅出货约 330 万台 Mac 的 PC 制造商来说,根本不可能有足够的资金进行竞争。2004 年,Windows 电脑的销量是 Mac 电脑的 56倍。同年,PC 制造商共售出 1.825 亿台,在 PowerPC Mac 平台和英特尔 PC 平台之间形成了巨大的鸿沟。

苹果从 PowerPC 迁移到英特尔平台消除了这一鸿沟,并将英特尔的规模经济带到了 Mac 上,这使得苹果不仅可以更容易地跟上其硬件竞争对手的步伐,而且还可以在其他方面进行创新,这使得 Mac 比普通 PC 更有价值。苹果的 MacOS 本身就是个重要的例子,它为苹果的平台在可用性、安全性和吸引力方面增添了独特的价值。

2012 年,市场研究公司Asymco分析师贺拉斯 · 德迪乌 (HoraceDediu)表示,苹果已经扭转微软在 PC 领域的主导地位,并称其差异化的英特尔 Mac 电脑迅速改变了 Mac 与 PC 销量之比。

图:Windows 电脑的销量是苹果 Mac 的数倍

苹果构建比 Mac 更大的非英特尔新平台

早在 2006年史蒂夫 · 乔布斯(Steve Jobs)首次展示苹果最初的英特尔 Mac 之后,另一个非常重大的转变立即开始发生。次年,苹果推出了 iPhone,随后在 2010 年推出了基于 iOS 的 iPad 平板电脑。

在接下来的十年里,苹果新的 iOS 移动软件平台 (基于 MacOS)变得与 Windows、Linux、ChromeOS或其他任何操作系统同样庞大,甚至在新兴的移动市场爆炸式增长中,可以说是更具有影响力的软件和开发平台。

重要的是,新的苹果平台不需要英特尔芯片。快速增长的 iPad 销量促使苹果成为世界领先的 PC 制造商,尽管一大批行业营销集团拼命试图将 iPad 描绘成一款 “媒体消费设备”。

但现实情况是,iPad 和 iPhone 的确正在取代 PC 的历史角色,同时为移动计算创造了英特尔 PC 无法比拟的新市场。这是个典型的颠覆案例:一种创新的新产品,可以有效地与现有的、更复杂、更昂贵的替代产品竞争。

尽管微软为制造自己的 “移动 Windows”做出了各种努力,英特尔曾多次尝试推动 Linux 和 Android 制造商销售其移动 x86 芯片,谷歌也在努力复制苹果的 iPad 成功,并用自家基于网络的 Chrome PC 或上网本与之抗衡,但还没有其他公司能够开发出在商业规模上能够与苹果 iOS 和 iPad OS 相媲美的移动计算应用平台,并取得类似的商业成就。

竞争对手移动平台支持使 iOS 受益的规模经济

事实上,没有其他平台能够取得苹果那样的成功,因为没有人真正复制苹果正在做的事情。ChromeOS最为接近:与英特尔 Mac 一样,它在相对标准的硬件上推出了独特的操作系统。除了美国学校之外,谷歌ChromeOS在寻找非常便宜的硬件市场也未能获得成功。

Android 授权厂商集体出货了大量智能手机,但 Android 平台的价值在应用商店和硬件平台之间分崩离析。Android 授权厂商的共性在很大程度上只是支持了一个更重要的行业标准,即 ARM 架构硬件,而不是推动苹果无法匹敌的规模经济。

由于苹果也在其 iOS 设备中使用 ARM 芯片,它从业界普遍使用的 ARM 架构中获益良多,包括倾注在 ARM 芯片开发和 ARM 架构软件工具、编译器和其他方面的所有集体努力。因此,当 Mac 电脑利用英特尔的 PC 通用性来提升 MacOS 在 Windows 或 Linux 上的独特价值时,苹果的移动设备销售却在利用 ARM 架构来支持 iOS 和iPadOS作为 Android 的卓越替代品。

但也有不同之处:虽然英特尔的台式机 x86 代表着一种专有处理器平台,但移动 ARM 架构是一种苹果可以授权并独立开发的技术,它在芯片层面上增加了独特的价值,就像它在 MacOS、iOS 和iPadOS上所做的那样。

图:苹果的 A4 芯片利用 ARM 的规模经济,同时增加了额外的定制价值

拥抱、延伸、熄灭

通过将未来几代 Mac 电脑转移到自己独特的增强型芯片上,苹果再次能够从共同的规模经济和增加独特价值的专有技术进步中获益。值得注意的是,PC 和移动领域的其他竞争对手也尝试过类似的做法,但都以失败告终。

三星和 LG 都试图通过 Tizen 和WebOS收购和开发自己独特的软件开发平台。然而,在较小的智能电视和手表市场之外,Android 有效地阻止了它们在标准硬件上推动差异化软件批量销售的能力,无论是在手机、平板电脑还是笔记本电脑上。华为也同样声称,在美国阻止华为使用谷歌的Android 系统后,出于必要,该公司即将推出自己的内部操作系统平台。

安卓本应团结整个行业对抗苹果。相反,它却把被许可方锁定在对谷歌及其政策的依赖上,同时有效地阻止了这些被许可方利用自己的软件平台自由创新。

另一方面,微软利用 ARM 架构的移动优势,多次尝试将 Windows PC 和移动设备从英特尔转移到 ARM。但微软缺乏像苹果那样果断地将整个平台转向新的芯片架构的能力,因为微软 Windows 平台的大部分是由 PC 授权厂商提供的。

微软及其合作伙伴推出的少数 Windows-on-ARM 设备只是拆分了 Windows 平台,而没有提供显著的附加值。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
内核日志及printk结构浅析