×
测量测试 > 测试测量应用 > 详情

简述纳米测量技术与微型智能仪器

发布时间:2024-06-12 发布时间:
|
纳米测量技术是纳米科学技术的基础学科之一。纳米科学技术的快速发展,不但给纳米测量技术提出了挑战,同时也给纳米测量技术提供了全新发展的机遇。综述了国内外纳米测量技术发展的现状,重点讨论了纳米材料、纳米电子学和纳米生物学等领域所涉及的纳米测量与性能表征的难题和挑战,论述了纳米科技成果给纳米测量技术带来的发展机遇,最后对纳米测量技术的发展方向做了展望。

微型智能仪器指微电子技术、微机械技术、信息技术等综合应用于仪器的生产中,从而使仪器成为体积小、功能齐全的智能仪器。它能够完成信号的采集、线性化处理、数字信号处理,控制信号的输出、放大、与其他仪器的接口、与人的交互等功能。微型智能仪器随着微电子机械技术的不断发展,其技术不断成熟,价格不断降低,因此其应用领域也将不断扩大。它不但具有传统仪器的功能,而且能在自动化技术、航天、军事、生物技术、医疗领域起到独特的作用。例如,目前要同时测量一个病人的几个不同的参量,并进行某些参量的控制,通常病人的体内要插进几个管子,这增加了病人感染的机会,微型智能仪器能同时测量多参数,而且体积小,可植入人体,使得这些问题得到解决。

1.纳米测量技术

纳米测量技术涉及传感器技术、探针技术、定位技术、扫描探针显微镜(SPM)技术等。

1.1传感器技术

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之广泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

电容位移传感器采用平行极板之间的电容变化来反映两极板距离变化,从而达到测微目的。电容传感器灵敏度很高,并可进行非接触测量,成为纳米测量中重要的传感器。

光学位移传感器测量的基本原理都是迈克尔逊干涉仪。干涉条纹的宽度为0.5λ,约0.2μm。通过细分达到纳米分辨率。

1.2探针技术

纳米测量,特别是纳米三维形貌的测量,经常应用探针技术。探针技术可分为接触式探针技术和非接触式探针技术。探针技术直接影响三维形貌测量的横向分辨率。

接触式探针技术最为典型的是轮廓仪(如Taylorsurf系列),一般最大行程为150mm,探针最小直径为0.1μm左右。采用电容或电感传感器检测探针纵向位移,可以得到0.5nm纵向分辨率。横向分辨率受探针尖直径的限制,难以达到纳米级。接触式探针仪器存在两方面的问题:其一是探针和被测表面的相互作用问题;其二是传感系统的潜力问题。接触式探针和被测表面存在0.7μN的作用力,在纳米尺度的测量中,这样的力是致命的。作为传感部分,光学系统的分辨率取决于光波长和可靠细分的程度,其极限是0.5nm;LVDT的分辨率很高,可对10pm缓慢变化值具有明显响应,且分辨率还可能提高;电容传感器的性能相当好,还有很大潜力。

非接触式扫描探针技术,一般是通过光束生成光探针,从而进行非接触式三维形貌测量。光探针技术主要问题是探针光斑的最小值和传感器所能探测到最小光斑的能力。

综上所述,在扫描探针技术中,垂直分辨率达到纳米不成问题,而横向分辨率的提高是关键。横向分辨率,无论采用接触式探针技术还是非接触式探针技术,都较难达到纳米尺度,这是由探针本身尺寸决定的。

1.3 STM/AFM及相关技术

STM:scanning tunneling microscope即扫描隧道显微镜。隧道扫描显微技术是在1981年有宾尼和罗拉尔发明的,这种设备具有高灵敏度,并且可获得0.01nm的纵向分辨率。这种设备不但可以应用于超高真空里(UHV-STM),而且可应用于大气环境里(大气STM技术)和液体状态下(电解质STM技术)。

AFM全称Atomic Force Microscope,即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。

在纳米领域中,令人感到振奋的是扫描隧道显微镜(STM)和原子力显微镜(AFM)的出现。1982年,国际商业机器公司苏黎世实验室开发出世界上第一台STM,使人类能够直接观察到纳米世界。以后,各种新型扫描探针显微镜,如AFM、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、扫描近场光学显微镜(SNOM)等不断被开发出来,大大扩展了被观察的材料范围和应用场所。

以STM/AFM为基础发展的显微镜,可统称为扫描探针显微镜(SPM)。它们大都能观测到纳米尺度,以它们为基础,进行适当的改造,可进行纳米测量。SPM应用于纳米测量时,提供了一个直径非常小的非接触式探针,从而极大地提高了测量分辨率。

1.4纳米测量用SPM必须解决的问题

SPM(Statistical Parametric Mapping)是由UCL(UniversityCollege London)的Wellcome Trust Centre中心的成员及其合作者开发的应用于神经影像的软件。Statistical Parametric Mapping 是用来验证功能影像数据假说的一种能创建和评估的空间的统计方法。这些想法可被软件实现,这个软件就是SPM.SPM软件包用来分析脑的影像数据序列。这个序列可以是来自同一目标,不同队列或时间的一系列图像。目前版本可用来分析fMRI(Functional Magnetic Resonance Imaging,功能磁共振成像),PET(Positron Emission Tomography,正电子发射断层扫描),SPECT,EEG(electroencephalo- graph,脑电图)和MEG(magnetoencephalogram,脑磁图)。

(1)必须能满足相应科学仪器的技术要求

作为测量仪器,必须尽量符合测量仪器的所有准则,如阿贝原理等。

(2)所测得的量值必须能溯源到计量基准

作为测量仪器进行纳米测量,本质就是纳米被测尺度和纳米级测量基准的比对,因此,测量值必须能够与现有的测量基准进行传递。

(3)提高SPM测量精度

测量用SPM由扫描器、微探针、测量控制系统及隔振系统组成。扫描器由压电陶瓷组成;微探针的几何形状通常是金字塔式(pyramid shaped)和圆柱式(cone shaped tip);测量和控制系统用光学、电容或电感方法来测量针尖的微小位移;隔振系统一般有悬挂弹簧式、弹簧阻尼式等,它们均是影响测量精度的重要指标。有以下几个研究内容:

a.减小压电陶瓷误差

SPM的扫描器由压电陶瓷制成,减小压电陶瓷误差对测量数据的影响的方法是,采用电荷控制压电陶瓷和单向扫描去除迟滞误差,软件补偿减小非线性和蠕变误差。

b.减小扫描器的结构误差

扫描器结构误差导致了交叉误差,如一维压电陶瓷,在x方向加电压时,引起了y、z方向的位移,从而导致误差。通过对所测数据进行二次曲线拟合或整体曲面拟合去除交叉误差。

c.减小测量系统的结构误差

从测量学的基本原理可知,在高精度测量时,测量系统的结构应尽可能符合阿贝测量原理。

d.兼顾探针和样品之间的相互作用关系

SPM探针的尖端几何形状与采集的数椐密切相关。测量针尖的曲率半径越小,测量结果越接近真实形貌。为了提高测量精度,必须对微探针的几何形状进行精确的控制和测量。使用时,兼顾样品表面的精细程度,选取合适曲率半径和纵横比的探针。

1.5其它纳米测量技术

其它的纳米测量技术还很多,如激光纳米测量技术就有纳米零差检测法、纳米外差检测法、纳米混频检测法等。下面简介几种纳米测量技术。

(1)光学近场扫描技术

目前光学显微技术的分辨率受到衍射规律的影响而被限制在500nm的扫描范围内。为了消除衍射现象,将光学扫描定位于目标表面以内50nm处。这种情况下仪器就处于光学的“近场”。可用锥形波束导向器探测被研究表面的辐射量子。光学近场扫描技术的横向分辨率可达10nm,可用来研究纳米微区的光学性质。

(2)纳米光探针扫描外差干涉仪原理

激光器发出的激光束经分光镜被分为两束:一束光经声光调制器后,其频率为f+f1,该光束经一定的光路进入光电探测器;另一束经过声光调制器,其频率为f+f2,该光束经反射镜后被物镜会聚照射到被测表面上,反射后也进入光电探测器,以上两束激光在至少有f1-f2的频率度的探测器上合成即发生外差干涉。通过干涉信号获得表面的信息。

(3)X射线干涉仪原理

早期的实验证明,X射线波长的数量级约为0.1nm,晶体中的原子间距也是这个数量级,于是Laue在1912年建议用晶体作为衍射光。让X射线通过硫酸铜晶体,在它后面的感光胶片上就能得到中间黑点和外围对称分布的一些明点图样,叫Laue图。与可见光栅相似,中心明点与可见光的衍射一样是零级最大值,而外围明点则是由于原子的外层电子在X射线的作用下,二次发射的散射光所叠加的效果。

X射线干涉仪原理与光栅类似,不过是光线变为波长更短的X射线,接收信号是干涉条纹而已。

1.6展望

纵观纳米测量技术发展的历程,它的研究主要向两个方向发展:一是在传统的测量方法基础上,应用先进的测试仪器解决应用物理和微细加工中的纳米测量问题,分析各种测试技术,提出改进的措施或新的测试方法;二是发展建立在新概念基础上的测量技术,利用微观物理、量子物理中最新的研究成果,将其应用于测量系统中,它将成为未来纳米测量的发展趋向。

但纳米测量中也存在一些问题限制了它的发展。建立相应的纳米测量环境一直是实现纳米测量亟待解决的问题之一,而且在不同的测量方法中需要的纳米测量环境也是不同的,目前应该建立一个合适的纳米环境,寻求新的测量原理和多种技术的综合应用。同时,对纳米材料和纳米器件的研究和发展来说,表征和检测起着至关重要的作用。由于人们对纳米材料和器件的许多基本特征、结构和相互作用了解得还不很充分,使其在设计和制造中存在许多的盲目性,现有的测量表征技术就存在着许多问题。此外,由于纳米材料和器件的特征长度很小,测量时产生很大扰动,以至产生的信息并不能完全代表其本身特性。这些都是限制纳米测量技术通用化和应用化的瓶颈,因此,纳米尺度下的测量无论是在理论上,还是在技术和设备上都需要深入研究和发展。

2.微型智能仪器

微型智能仪器指微电子技术、微机械技术、信息技术等综合应用于仪器的生产中,从而使仪器成为体积小、功能齐全的智能仪器,能够完成信号的采集、线性化处理、数字信号处理、控制信号的输出、放大、与其它仪器的接口、与人的交互等功能。微型智能仪器属于微电子机械系统的研究范畴。使用时,只需按系统的需要,选取不同微型智能仪器进行组合即可。微型智能仪器是仪器和微电子机械技术结合后的一个必然发展趋势,它的实现将带来仪器技术、传感器技术、信息技术等的重大变化。

微型智能仪器通常采用微电子机械技术将多传感器集成在一起,再与处理信号的信息处理单元和控制输出件集成。根据需要,可测量和评定所感兴趣的参数,并向需要的地方传输控制信号。这个系统,可以估测由相互干扰产生的噪声。在人体中,传感信号通过神经系统来接收并传给大脑,由大脑用天然的“并行计算系统”可靠准确地测评它们,最后再控制相应的执行器官,微型智能仪器可望具有类似的功能。

2.1微型智能仪器发展的可能性

(1)微传感器的不断发展

目前,传感器有越来越小的趋势。通过MEMS技术可以实现单一的微传感器到极小尺寸的集成传感器系统。今天正在出现大量的微传感器,它们很有发展前途和广阔的市场前景。世界市场容量的年增加量大约是20%,而且有很多竞争者。以MEMS技术为支持,完全可以实现微传感器的一个独立市场,在未来的工业自动化、环境保护、生产和加工技术以及军事领域将发挥很大作用。

(2)信息处理单元体积的不断缩小

微型智能仪器的本质就是多传感器的集成、传感器与信息处理单元的集成、信息处理和控制信号输出。信息处理单元对应于宏观的CPU。由于微电子技术的发展,目前器件的线宽可达0.18μm,微电子的集成度更高,因此可把微型传感器、信息处理单元、输出电路集成为智能仪器。

(3)封装、系统集成、模数电路的集成等技术的发展

微型智能仪器几乎要涉及所有的MEMS技术。在一个微型智能仪器中,不仅有各种传感器的敏感材料和结构,还要有模拟电路、数字电路、信息存储电路、信息处理电路等。这就需要解决一些相应的关键技术如封装、系统集成、连接技术、模数电路集成等。这些问题已经在MEMS技术中得到一定的解决,因此在今后的研究中,可为微型智能仪器的发展提供技术支持。

2.2微型智能仪器发展的必然性

(1)模块化的发展模块化发展能够给人们提供极大的方便。目前的传感器,往往要根据传感器的本身进行前置电路的设计,还要进行系统的标定等,不仅花费大量时间,而且结果往往不理想。而微型智能仪器是一个模块,对使用者,只需关心它的输出即可,其它均由智能仪器本身完成。模块化的趋势是系统设计的必然趋势,也必然对微型智能仪器提出同样的要求。

(2)信息处理的发展信息获取和处理越来越快,人们在进行信号采集时,希望许多工作由CPU以外的器件完成。微型智能仪器可以作为一个计算机的外围部件,它既能完成传统智能仪器的所有工作,同时又把有用信息传输给计算机。这样使测控系统更加简洁,效率提高。

(3)系统集成的继续发展微型传感器体积小、成本低,目前已有很大发展。多传感器的集成已有许多研究成果,信息处理单元的价格下降、体积减小,模拟数字电路在硅片上集成,这些技术有着相同的技术基础,因此可以利用目前一些集成技术或经过进一步发展,完成微型智能仪器系统的集成。

2.3技术上的问题

技术上的问题不仅是如何制造,同样重要的还有标准化问题。目前传感器的种类非常多,原理各异,采用同样的处理电路和信息处理单元是不可能的。而对不同量程、不同原理的传感器又不可能每一种研制一套信息处理单元电路,因此必须有一个制造标准,在不同功能、不同加工方法的微构件集成在一起时,使众多的问题有相应的指导规范。这就意味着必须建立微型智能仪器的各种标准。只有遵循这些标准,微型智能仪器才能走向蓬勃的发展道路。

3.结语

纳米测量技术伴随着纳米科学全面进入21世纪,它不仅带动科技的发展,同时也能促进经济的发展。纳米测量技术将成为人们征服自然、探索自然的强有力的工具。

微型智能仪器是仪器的重要发展方向,它将创造更多的市场,使我们的生活更加舒适、生产更加方便。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
避免氧化锆氧量分析仪的误差