在实际的应用中,工程师们经常遇到需要进行功率测量的场景,除却专门的功率分析仪可以完成测量之外,日常使用的示波器也能为其所用。
理论来说,功率等于电压乘以电流,而示波器是电压响应仪器,如何来进行功率分析呢?示波器配备电流探头后,通过电流探头把电流信号转换成电压信号,即可达到测量电流的目的,因此示波器可以测量功率。
首先让我们明确示波器功率分析能做到哪些功能:
1. 分析整体谐波失真、有效功率、视在功率、功率因素、波峰因素
2. 根据 IEC61000-3-2 标准进行电流谐波测试
3. 测量开关设备的开关损耗和导通损耗。
4. 分析电流和电压的转换速率 dl/dt 和 dV/dt
5. 自动设置示波器纹波测量
6. 对脉冲宽度调制进行分析
从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。
过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或 PC 进行艰苦的计算。今天,大多数工程师转而将 示波器 作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。
电源设计问题及其测量需求
理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题:
电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样?
设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的 EMI/EMC 标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。
示波器和电源测量
对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。
整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。
开关电源基础
大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件 (如电阻和线性晶体管),而主要使用 (理想情况下) 无损耗的元器件:开关晶体管、电容和磁性元件。
SMPS 设备还有一个控制部分,其中包括脉宽调制调节器脉频调制调节器以及反馈环路 1 等组成部分。控制部分可能有自己的电源。图 1 是简化的 SMPS 示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。
SMPS 技术使用了金属氧化物场效应晶体管(MOSFET)与绝缘栅双极晶体管(IGBT) 等功率半导体开关器件。这些器件开关时间短,能承受不稳定的电压尖峰。同样重要的是,它们不论在开通还是断开状态,消耗的能量都极少,效率高而发热低。开关器件在很大程度上决定了 SMPS 的总体性能。对开关器件的主要测量包括:开关损耗、平均功率损耗、安全工作区及其他。
图 1. 开关电源简化示意图。
图 2. MOSFET 开关器件,显示了测量点。
准备进行电源测量
准备进行开关电源的测量时,一定要选择合适的工具,并且设置这些工具,使它们能够准确、可重复地工作。当然示波器必须具备基本的带宽和采样速率,以适应 SMPS 的开关频率。电源测量最少需要两个通道,一个用于电压,一个用于电流。有些设施同样重要,它们可以使电源测量更容易、更可靠。下面是一部分要考虑的事项:
仪器能在同一次采集中处理开关器件的开通和断开电压吗?这些信号的比例可能达到 100,000:1。
有可靠、准确的电压探头和电流探头吗?有可以校正它们的不同延迟的有效方法吗?
有没有有效的方法来将探头的静态噪声降至最低?
仪器能够配备足够的记录长度,以很高的采样速率捕获较长的完整工频波形吗?
这些特征是进行有意义且有效的电源设计测量的基础。
测量一次采集中的 100 伏和 100 毫伏电压
要测量开关器件的开关损耗和平均功率损耗,示波器首先必须分别确定在断开和开通时开关器件上的电压。
在AC/DC变流器中,开关器件上的电压动态范围非常大。开通状态下开关器件上通过的电压取决于开关器件的类型。在图 2 所示的 MOSFET 管中,开通电压为导通电阻和电流的乘积。在双极结型晶体管 (BJT) 和 IGBT 器件中,该电压主要取决于饱和导通压 (VCEsat)。断开状态的电压取决于工作输入电压和开关变换器的拓扑。为计算设备设计的典型直流电源使用 80 Vrms 到 264 Vrms 之间的通用市电电压。
在最高输入电压下开关器件上的断开状态电压 (TP1 和 TP2 之间) 可能高达 750 V。在开通状态,相同端子间的电压可能在几毫伏到大约 1 伏之间。图 3 显示了开关器件的典型信号特性。
图 3. 开关设备的典型信号
为了准确地进行开关器件电源测量,必须先测量断开和开通电压。然而,典型的 8 位数字 示波器 的动态范围不足以在同一个采集周期中既准确采集开通期间的毫伏级信号,又准确采集断开期间出现的高电压。要捕获该信号,示波器的垂直范围应设为每分度 100 伏。在此设置下,示波器可以接受高达 1000 V 的电压,这样就可以采集 700 V 的信号而不会使示波器过载。使用该设置的问题在于最大灵敏度 (能解析的最小信号幅度) 变成了 1000/256,即约为 4 V。
泰克 DPOPWR 软件解决了这个问题,用户可以把设备技术数据中的 RDSON 或 VCEsat 值输入图 4 所示的测量菜单中。如果被测电压位于示波器的灵敏度范围内,DPOPWR 也可以使用采集的数据进行计算,而不是使用手动输入的值。
图 4. DPOPWR 输入页面允许用户输入 RDSON 和 VCEsat 的技术数据值。
图 4. 传输延迟应对电源测量的影响
消除电压探头和电流探头之间的时间偏差
要使用数字示波器进行电源测量, 就必须测量 MOSFET 开关器件 (如图 2 所示) 漏极、源极间的电压和电流,或 IGBT 集电极、发射极间的电压。该任务需要两个不同的探头:一支高压差分探头和一支电流探头。后者通常是非插入式霍尔效应型探头。这两种探头各有其独特的传输延迟。这两个延迟的差 (称为时间偏差),会造成幅度测量以及与时间有关的测量不准确。一定要了解探头传输延迟对最大峰值功率和面积测量的影响。毕竟,功率是电压和电流的积。如果两个相乘的变量没有很好地校正,结果就会是错误的。探头没有正确进行“时间偏差校正”时,开关损耗之类测量的准确性就会影响。
图 5 所示的测试设置比较了探头端部的信号 (下部迹线显示) 和传输延迟后示波器前端面板处的信号 (上部显示)。
图 6 - 图 9 是表明了探头时滞影响的实际示波器屏幕图。它使用泰克 P5205 1.3 kV 差分探头和 TCP0030AC/DC 电流探头连接到 DUT 上。电压和电流信号通过校准夹具提供。图 6 说明了电压探头和电流探头之间的时滞,图 7 显示了在没有校正两个探头时滞时获得的测量结果(6.059mW)。图 8 显示了校正探头时滞的影响。两条参考曲线重叠在一起,表明已经补偿了延迟。图 9 中的测量结果表明了正确校正时滞的重要性。这一实例表明,时滞引入了 6% 的测量误差。准确地校正时滞降低了峰到峰功率损耗测量误差。
图 5. 传输延迟效应对电源测量的影响。
图 7. 有时间偏差时峰值幅度和面积测量显示为 6.059 瓦。
DPOPWR 电源测量软件可以自动校正所选探头组合的时间偏差。该软件控制示波器,并通过实时电流和电压信号调整电压通道和电流通道之间的延迟,以去除电压探头和电流探头之间传输延迟的差别。
还可以使用一种静态校正时间偏
『本文转载自网络,版权归原作者所有,如有侵权请联系删除』