×
测量测试 > 测试测量应用 > 详情

深扒示波器内部原理和结构

发布时间:2021-08-26 发布时间:
|

示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。


01
示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X 轴偏转系统、Y 轴偏转系统、延迟扫描系统、标准信号源组成。

1、示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图 1 所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

图 1 示波管的内部结构和供电图示

(1)荧光屏


现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的 10%所经过的时间叫做“余辉时间”。余辉时间短于 10μs 为极短余辉,10μs—1ms 为短余辉,1ms—0.1s 为中余辉,0.1s-1s 为长余辉,大于 1s 为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

(2)电子枪及聚焦


电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。

栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。

如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的 W1 电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极 G2 与 A2 相连,所加电位比 A1 高。G2 的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由 K、G1、G2 完成,K、K、G1、G2 叫做示波管的第一电子透镜。第二次聚焦发生在 G2、A1、A2 区域,调节第二阳极 A2 的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1 上的电压叫做聚焦电压,A1 又被叫做聚焦极。有时调节 A1 电压仍不能满足良好聚焦,需微调第二阳极 A2 的电压,A2 又叫做辅助聚焦极。

(3)偏转系统


偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图 8.1 中,Y1、Y2 和 Xl、X2 两对互相垂直的偏转板组成偏转系统。Y 轴偏转板在前,X 轴偏转板在后,因此 Y 轴灵敏度高(被测信号经处理后加到 Y 轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

(4)示波管的电源


为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极 G1 相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。

第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

02
示波器的基本组成

从上一小节可以看出,只要控制 X 轴偏转板和 Y 轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数 f(t),它随时间的变化而变化。因此,只要在示波管的 X 轴偏转板上加一个与时间变量成正比的电压,在 y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图 2 所示。它由示波管、Y 轴系统、X 轴系统、Z 轴系统和电源等五部分组成。

图 2 示波器基本组成框图

被测信号①接到“Y"输入端,经 Y 轴衰减器适当衰减后送至 Y1 放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1 时间,到 Y2 放大器。放大后产生足够大的信号④和⑤,加到示波管的 Y 轴偏转板上。为了在屏幕上显示出完整的稳定波形,将 Y 轴的被测信号③引入 X 轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。

由于从触发到启动扫描有一时间延迟Г2,为保证 Y 轴信号到达荧光屏之前 X 轴开始扫描,Y 轴的延迟时间Г1 应稍大于 X 轴的延迟时间Г2。扫描电压⑦经 X 轴放大器放大,产生推挽输出⑨和⑩,加到示波管的 X 轴偏转板上。z 轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将 Y 轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

03
示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是 20MHz 或者 40MHz 的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

1、荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为 10 格,垂直方向分为 8 格,每格又分为 5 份。垂直方向标有 0%,10%,90%,100%等标志,水平方向标有 10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2、示波管和电源系统

(1)电源(Power)


示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

(2)辉度(Intensity)


旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

(3)聚焦(Focus)


聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

(4)标尺亮度(Illuminance)


此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

3、垂直偏转因数和水平偏转因数

(1)垂直偏转因数选择(VOLTS/DIV)和微调


在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对 X 轴和 Y 轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV 或者 DIV/mV,DIV/V,垂直偏转因数的单位是 V/cm,mV/cm 或者 V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按 1,2,5 方式从 5mV/DIV 到 5V/DIV 分为 10 档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于 1V/DIV 档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化 1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是 1V/DIV,采用×5 扩展状态时,垂直偏转因数是 0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V 信号的垂直移动距离之比常被用于判断被测信号的电压值。

(2)时基选择(TIME/DIV)和微调


时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按 1、2、5 方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在 1μS/DIV 档,光点在屏上移动一格代表时间值 1μS。




『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
示波器基础系列之七 -- 关于示波器的RIS模式和Roll模式