×
家电数码 > 手机 > 详情

一种UHF无源RFID标签芯片阻抗测试方法研究

发布时间:2021-01-13 发布时间:
|

射频识别RFID(Radio Frequency Identification)系统由阅读器和电子标签组成,天线是阅读器和电子标签通信的桥梁。为了使阅读器发射的射频能量最大限度地被无源标签天线所吸收,理论要求电子标签天线和标签芯片阻抗达到共轭匹配。即UHF频段无源RFID芯片阻抗值,直接决定着电子标签天线设计,进而影响电子标签的性能。
UHF频段无源RFID电子标签采用反射调制原理工作,其原理决定了电子标签芯片阻抗具有UHF频段、无源、时变性、非线性等复杂特性,尤其是对于尺寸不足1 mm2的单芯片,本身即存在着尺寸小、射频影响等困难,导致常规的测试方法很难准确地对电子标签芯片阻抗进行测试。本文研究了UHF无源单芯片阻抗测试方法,通过对标准芯片阻抗测试,对测试方法进行了检验。
1 测试原理
对于UHF频段无源电子标签工作特征而言,由于单芯片工作在UHF频段,通过标签芯片pad的任何引线都将产生寄生电容或者寄生电感,从而对芯片阻抗测试产生影响。同时,采用常规的测试方法,引线的长度和宽度很难把握,测试的重复性差,不利于标签芯片阻抗的准确测试。本文采用传输线阻抗匹配网络对芯片阻抗进行测试,较好地解决了实际测试中面临的接入困难等问题。
由分布参数电路理论可知,在UHF频段,传输线的宽度和长度影响着传输线特性阻抗值。例如本文所使用的平行双导线,其工作频带很宽,可用于1 GHz以下所有频率中,平行双导线的特性阻抗值[3]如式(1)所示:

式中,a为平行双导线中心的距离,b为平行双导线单根导线的宽度。
利用传输线此特性,构建一个传输线阻抗匹配网络模型,如图1所示。左端为匹配网络的前端电路,输入能量为芯片正常工作状态下的最小功耗,参考阻抗可以用一个阻抗为50 Ω的电阻R0代替。终端开路的λ/4的传输线相当于短路,实现阻抗变换,在λ/4传输线末端并联一段终端短路的短截线,此段短截线相当于一个感抗元件。芯片一般呈现容性,并联在λ/4传输线末端,通过改变短截线终端与芯片的距离Lλ,可以改变短截线引入的感抗大小,进而与芯片阻抗达到共轭匹配。当芯片与匹配网络达到共轭匹配状态时,芯片两端的回波损耗S11最小,即芯片几乎吸收了前端电路传输的所有能量,并且是正常工作的最小能量。通过观察回波损耗S11的值,用以确定最优的传输线阻抗Z0以及短截线距离芯片的长度Lλ,反推此时的阻抗网络,即可获得无源RFID标签芯片在工作状态时的输入阻抗。


图2为阻抗匹配网络的等效电路,YR0代表电阻R0经λ/4传输线变换后的输入导纳,Ys代表末端短路的短接线在芯片连接处的输入导纳,Ychip代表芯片的输入导纳。Ychip和YR0、Ys相并联。由传输线相关理论[4]可得:


实际测试模型如图3所示,读写器和可调衰减器通过同轴线相连,其输出口参考阻抗均为50 Ω。运行读写器,将其频率设置为915 MHz,通过调节可调衰减器,减小输入阻抗匹配网络的能量,同时调节传输线阻抗Z0以及短截线终端距离芯片的距离Lλ,使芯片能够获得正常工作的最小能量。此时,将Z0和Lλ的值代入式(8)即可得到芯片在最低功耗下的阻抗值。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
认知无线电的频谱感知技术研究