摘要 低压电力线传输特性的复杂性和传输过程中干扰信号的多变性,使其推广受到限制。文中依据高低频电路原理,结合现代通信与数字信号处理技术,设计了电力线载波通信的外围专用电路,包括发送驱动电路、耦合接收和AGC系统等,较好地解决了载波信号的接收与发送问题。
关键词 电力线载波通信;耦合;AGC系统
电力线载波通信由于其潜在的经济效益和广阔的应用前景备受关注,但由于低压电力线传输特性的复杂性和传输过程中干扰信号的多变性使其推广受到限制。低压电力线载波通信模块包括发送放大电路、耦合接收和ACE系统、滤波单元、调制解调芯片等,如图1所示。其中所设计的滤波单元、调制解调单元集成芯片。针对电力线通信中,可供选择的通信频率在60~150 kHz,载波频带带宽为4kHz、传输信息量少、时延要求不高,而抗干扰要求较高等特点,依据高低频电路原理和数字通信原理,设计了电力线载波通信模块外围专用电路、发送放大电路、耦合接收和ACE控制电路,较好地解决了载波信号的接收与发送问题。
1 发送放大耦合电路的设计
本部分外围电路完成调制信号发送前的调整放大和耦合功能。由于FPGA的管脚最高输出电平为3.3 V,而信号在经过发送和接收的耦合,在电力上传输后衰减较大,因此调制后的信号还需进行适当放大,然后才能耦合***电力线上。发送放大及耦合电路如图2所示。
测量表明,电力线的阻抗分布在0.5~80 Ω之间,其阻抗主要依赖于用电负荷的大小、线路结构以及配电变压器阻抗等多种因素。由于配电线路结构和配电变压器的阻抗特性相对较稳定,因此,用电负荷的大小对电力线阻抗的变化影响较大。
由于甩电负荷具有随机性,其主要表现为在不同的时间,用电负荷发生变化,即阻抗的时变性。研究电力线的输入阻抗,对于提高信号的发送功率和有用信号的输入功率,在分析发送电路中,设定电力线的输入阻抗为5 Ω具有典型意义。
在与电力线的接口电路中,使用大功率稳压管和电阻组成限幅电路,起保护作用。它能避免系统受到 诸如强雷电脉冲等瞬时过电压的干扰。