×
单片机 > 单片机程序设计 > 详情

ARM常用函数的配置函数---重点积累

发布时间:2020-06-05 发布时间:
|
//Author:"泪与汗的缠绵"

//Data:2011-11月

//功能:积累编程的思想与套路

本页所包含的配置函数有:
void SysTick_Configuration(void);
void GPIO_Configuration(void); //端口引脚功能的配置
void EXTI_Configuration(void);//配置外部中断线
void NVIC_Configuration(void); //配置中断的优先级、内部中断向量
void RCC_Configuration(void); //配置系统及其外设的时钟
void IWDG_Configuration(void);//看门狗的配置结构
void  TIM_Configuration(void)
void  ADC_configuration();
void DMA_Configuration(void);
void DAC_Configuration(void);
//同时需要配置的结构体变量
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;

*******//Cortex系统定时器(SysTick)*********************
*******************************************************
*******************************************************
void SysTick_Configuration(void)
{
    
   //选择系统定时器(SysTick)的时钟源
    SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);

  
   SysTick_SetReload(250000);

   
  SysTick_CounterCmd(SysTick_Counter_Enable);

 
   SysTick_ITConfig(ENABLE);
}
*********///GPIO的配置程序***************************************
******************************************************************
*******************************************************************
void GPIO_Configuration(void) void RCC_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;
 
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_Init(GPIOC, &GPIO_InitStructure);
   
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
}
//中断线路初始化
void EXTI_Configuration(void)
{
   
  EXTI_InitStructure.EXTI_Line = EXTI_Line9;
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  EXTI_Init(&EXTI_InitStructure);

   
  EXTI_InitStructure.EXTI_Line = EXTI_Line13;
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  EXTI_Init(&EXTI_InitStructure);
}
///嵌套中断向量NVIC**********************************
/
    GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource9);
 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
 NVIC_InitStructure.NVIC_IRQChannel=EXTI0_IRQChannel;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority=0;
 NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
 NVIC_Init(&NVIC_InitStructure);

 //为EXTI_Line9使能并配置中断向量
 
    //为EXTI_Line0使能并配置中断向量
 GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource9);
 NVIC_InitStructure.NVIC_IRQChannel=EXTI9_5_IRQChannel;
 NVIC_Init(&NVIC_InitStructure);

 //为EXTI_Line9使能并配置中断向量
 
 //为EXTI_Line13使能并配置中断向量
 GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource9);
 NVIC_InitStructure.NVIC_IRQChannel=EXTI15_10_IRQChannel;
 NVIC_Init(&NVIC_InitStructure);

}

********************************************************************
**************系统时钟的配置RCC_Configuration**********************
void RCC_Configuration(void)
{
 
  RCC_DeInit();
  
  RCC_HSEConfig(RCC_HSE_ON);
   
  HSEStartUpStatus = RCC_WaitForHSEStartUp();
    if(HSEStartUpStatus == SUCCESS)
  {
   
    RCC_HCLKConfig(RCC_SYSCLK_Div1);
      
    RCC_PCLK2Config(RCC_HCLK_Div1);
      
    RCC_PCLK1Config(RCC_HCLK_Div2);
      
    FLASH_SetLatency(FLASH_Latency_2);
   
    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
  */
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
     
    RCC_PLLCmd(ENABLE);
     
    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
    {
    }
    
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
      
    while(RCC_GetSYSCLKSource() != 0x08)
    {
    }
 
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOB |RCC_APB2Periph_AFIO, ENABLE); 

  
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);

  }[page]
*****************//初始化独立看门狗******************************
********************************************************************
********************************************************************
********************************************************************
void IWDG_Configuration(void)
{
 
 
  //是能或者失能对寄存器IWDG_PR和IWDG_RLR
  IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);

 
  //选定工作频率
  IWDG_SetPrescaler(IWDG_Prescaler_32);

  //设置重装载值
  IWDG_SetReload(230);

 
  //按照重装载器的值重装载IWDG计数器的值-----------此动作相当于“喂狗”
  IWDG_ReloadCounter();

 
  //使能IWDG
  IWDG_Enable();
}
/ *******************
/
   TIM_DeInit(TIM1); //将外设TIMx寄存器重设为缺省值
//2、基础设置
 
  TIM1_TimeBaseStructure.TIM_Prescaler = 0x0; //预分频,此值+1为分频的除数得到计数周期;
  TIM1_TimeBaseStructure.TIM_Period = 0xFFFF;//计数周期 (即当计数值达到“计数值”时,刚好用时一个计数周期) 
  TIM1_TimeBaseStructure.TIM_ClockDivision = 0x0;//时钟因子
  TIM1_TimeBaseStructure.TIM_RepetitionCounter = 0x0;
  TIM1_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式
             //TIM_CounterMode_Dowm            向下计数
             //TIM_CounterMode_CenterAligned1 中心对齐方式1
            // TIM_CounterMode_CenterAligned2 中心对齐方式2
            // TIM_CounterMode_CenterAligned3 中心对齐方式3

  TIM_TimeBaseInit(TIM1,&TIM1_TimeBaseStructure);
// 3、输出通道设置
 
  TIM1_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
  //TIM_OCMode_Timing输出比较时间模式(输出引脚冻结无效)
  //TIM_OCMode_Active 输出比较主动模式(匹配时设置输出引脚为有效电平,当计数值为比较/捕获寄存器值相同时,强制输出为高平)                            
  TIM_OCMode_Inactive; 输出比较非主动模式 (匹配时设置输出引脚为无效电平,当计数值为比较/捕获寄存器值相同时,强制输出为低电平)     
  //TIM_OCMode_Toggle 输出比较触发模式(翻转。当计数值与比较/捕获寄存器值相同时,翻转输出引脚的电平)
  //TIM_OCMode_PWM1向上计数时,当TIMx_CNT < TIMx_CCR*时,输出电平有效,否则为无效,
  //向下计数时,当TIMx_CNT > TIMx_CCR*时,输出电平无效,否则为有效  
  //TIM_OCMode_PWM2 ;与PWM1模式相反

  TIM1_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM1_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;                 
  TIM1_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM1_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
  TIM1_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;        
  TIM1_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
  TIM1_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;         
 
  TIM_OC1Init(TIM1,&TIM1_OCInitStructure);

  TIM1_OCInitStructure.TIM_Pulse = CCR2_Val;
  TIM_OC2Init(TIM1,&TIM1_OCInitStructure);

  TIM1_OCInitStructure.TIM_Pulse = CCR3_Val;
  TIM_OC3Init(TIM1,&TIM1_OCInitStructure);

 
  TIM1_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
  TIM1_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
  TIM1_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
  TIM1_BDTRInitStructure.TIM_DeadTime = 0x75;
  TIM1_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
  TIM1_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
  TIM1_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;

  TIM_BDTRConfig(TIM1,&TIM1_BDTRInitStructure);

 
  TIM_Cmd(TIM1,ENABLE);

 
  TIM_CtrlPWMOutputs(TIM1,ENABLE);
  }

  ////////////AD的配置函数/////////////////////////////
   
 //时钟配置:
 // ADCCLK = PCLK2/4
   
 //应用配置
void  ADC_configuration()
{
  ADC_InitTypeDef  ADC_InitStructure;
  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
   
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
         //ADC_ScanConvMode 规定了模数转换工作在扫描模式(多通道)还是单次(单通道)模式。可以设置这个
         //问ENABLE 或者 DISABLE。                                       
  ADC_InitStructure.ADC_ContinuousConvMode=ENABLE;     
         //ADC_ContinuousConvMode 规定了模数转换工作在连续还是单次模式。可以设置这个参数为 ENABLE 或
         //DISABLE。
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
      //ADC_ExternalTrigConv  描述
      //ADC_ExternalTrigConv_T1_CC1  选择定时器 1 的捕获比较 1 作为转换外部触发
      //ADC_ExternalTrigConv_T1_CC2  选择定时器 1 的捕获比较 2 作为转换外部触发
      //ADC_ExternalTrigConv_T1_CC3  选择定时器 1 的捕获比较 3 作为转换外部触发
      //ADC_ExternalTrigConv_T2_CC2  选择定时器 2 的捕获比较 2 作为转换外部触发
      //ADC_ExternalTrigConv_T3_TRGO  选择定时器 3 的 TRGO作为转换外部触发
      //ADC_ExternalTrigConv_T4_CC4  选择定时器 4 的捕获比较 4 作为转换外部触发
      //ADC_ExternalTrigConv_Ext_IT11  选择外部中断线 11 事件作为转换外部触发
      //ADC_ExternalTrigConv_None  转换由软件而不是外部触Ⅳ?
  ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right;
      //ADC_DataAlign  描述:
      //ADC_DataAlign_Right  ADC 数据右对齐
      //ADC_DataAlign_Left  ADC 数据左对齐
  ADC_InitStructure.ADC_NbrOfChannel = 1; // 规定了顺序进行规则转换的 ADC 通道的数目。这个数目的取值范围是 1 到16。
       //ADC_NbreOfChannel
  ADC_Init(ADC1, &ADC_InitStructure);
 
 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_55Cycles5);
      //(ADC1 或 ADC2,ADC_Channel_X,Rank,ADC_SampleTime);
                                   //规则组采样顺序。取值范围 1 到16。  
  // ADC_SampleTime: //ADC_SampleTime_1Cycles5   采样时间为 1.5 周期
      //ADC_SampleTime_7Cycles5   采样时间为 7.5 周期
      //ADC_SampleTime_13Cycles5  采样时间为 13.5 周期
      //ADC_SampleTime_28Cycles5  采样时间为 28.5 周期
      //ADC_SampleTime_41Cycles5  采样时间为 41.5 周期
      //ADC_SampleTime_55Cycles5  采样时间为 55.5 周期
      //ADC_SampleTime_71Cycles5  采样时间为 71.5 周期
      //ADC_SampleTime_239Cycles5 采样时间为 239.5 周期 
 
  ADC_DMACmd(ADC1, ENABLE);
 
 
  ADC_Cmd(ADC1, ENABLE);

    
  ADC_ResetCalibration(ADC1);
 
  while(ADC_GetResetCalibrationStatus(ADC1));//等待ADC的校准寄存器被设置完毕

 
  ADC_StartCalibration(ADC1);
 
  while(ADC_GetCalibrationStatus(ADC1));
    
 
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);

  AD_value=ADC_GetConversionValue(ADC1);//返回最近一次 ADCx 规则组的转换结果
  }

void DMA_Configuration(void)
{
DMA_DeInit(DMA_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;      //定义DMA外设基地址
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue; // 定义DMA内存基地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;               //外设作为数据传输的来源(外设传到内存) DMA_DIR_PeripheralDST——内存传到外设
DMA_InitStructure.DMA_BufferSize = 3;                            //连续转化3个AD通道值
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设寄存器地址不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;          //内存寄存器地址递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; //外设数据宽度32bit
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;    //内存数据宽度32bit
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;     //DMA模式是循环
DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;       //DMA没有设置内存到内存传输
DMA_Init(DMA_Channel1, &DMA_InitStructure);

DMA_Cmd(DMA_Channel1, ENABLE);
}

 //RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
void DAC_Configuration(void)
    {
   DAC_InitTypeDef DAC_InitStructure;
  
      DAC_InitStructure.DAC_Trigger=DAC_Trigger_Software;         //DAC触发方式为软件控制
      DAC_InitStructure.DAC_WaveGeneration=DAC_WaveGeneration_None;      //不从DAC端口产生波形
      DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude=DAC_LFSRUnmask_Bits8_0; //8位DA波形生成模式
      DAC_InitStructure.DAC_OutputBuffer=DAC_OutputBuffer_Enable;       //使能DAC输出缓冲器
                //用上面参数初始化DAC通道1
    DAC_Init(DAC_Channel_1, &DAC_InitStructure); 
      DAC_Cmd(DAC_Channel_1, ENABLE);        //使能DAC通道1
      DAC_Init(DAC_Channel_2, &DAC_InitStructure);           //用上面参数初始化DAC通道1
   DAC_Cmd(DAC_Channel_2, ENABLE);        //使能DAC通道2
DA的使用方式:
DAC_SetChannel2Data(DAC_Align_12b_L, DAC_data); //设置DAC通道1为12位且数据左对齐模式
         DAC_SoftwareTriggerCmd(DAC_Channel_2, ENABLE); //使能DAC通道1的软件触发方式,转换一次
         DAC_SetChannel1Data(DAC_Align_12b_L, DAC_data); //设置DAC通道1为12位且数据左对齐模式
         DAC_SoftwareTriggerCmd(DAC_Channel_1, ENABLE); //使能DAC通道1的软件触发方式,转换一次
}




『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
Keil(MDK-ARM)系列教程(七)_菜单