×
电源 > 稳流/电流管理 > 详情

电流控制技术和斜坡补偿

发布时间:2020-06-06 发布时间:
|

4.振铃电感电流

① 电感电流对电源或负载的瞬态变化产生振铃响应;

② 在开关频率附近控制环路增益达到最高,从而产生不稳定趋向。

通过斜坡补偿可以抑制这种振铃电感电流,例如当补偿坡度为电感电流下降沿的斜率时(即m=-m2),振铃电流在一个周期内就完全得到了抑制。


图 9 等效电感电流、电流误差和周期T 的关系曲线

斜坡补偿设计步骤:

图 10 示出斜坡补偿电路。R1 和R2 组成了从晶振的输出到限流引脚(脚1)的分压网络,迭加斜坡补偿信号到初级的电流波形,R1、R2 值的比例决定了所加的斜坡补偿量。电容C1是交流耦合电容,使晶振的交流分量耦合到R2,去掉了直流偏置部分。C2 和R1 组成滤波电路,滤去初级Ip中的前沿尖峰,避免误动作。? VOSC是晶振锯齿波的峰峰值。将电容去掉得到图11 简化电路。


图10 斜坡补偿电路

 

图 11 简化的斜坡补偿电路


四、电流控制技术及斜坡补偿的应用

1. 平均电流法Boost电路设计实例

设计 1200W功率因数校正电路,采用Boost电路的拓扑,平均电流法的控制电路,UC3854BN的控制芯片
电路参数如下:

输入电压:Vin=220V±25%(165V~275V);

直流输出电压:Vo=410V;

开关频率:fs=80kHz;

功率因数:PF>0.993;

效率:?>0.95;

电感:L=600μH;

检测变压器变比:1∶100;

检测电阻:15O。

①电流环设计为了稳定运行,须进行电流环相位补偿。

电流环补偿后在开关频率附近提供平稳增益。在低频的零点响应提供高增益完成平均电流控制工作。在开关频率附近误差放大器的增益要配合电感电流的下降沿。本设计开关频率为80KHz,单位增益交越频率应为14KHz(1/6 开关频率),但本电流环的主要工作是跟踪线电流,故10KHz 的带宽是合适的值。电流环的零点必须设置在交越频率上,或低于交越频率处。如设置在交越频率上,相位裕度有45°,低于交越频率则相位裕度更大点。45°的相位裕度的系统工作稳定、低过冲、干扰小,所以将零点设置在略低于交越频率处(fs 为10KHz)。当极点高于开关频率的1/2 时,极点不会影响控制环的频率响应。为了减少对噪声的敏感性,极点通常设置在开关频率附近。本设计设置极点在开关频率处(fp 为80kHz)。设计电流环的过程为先算出零点时功率部分的增益,而功率部分增益乘以电流放大器增益为整个电流环增益,整个电流环的增益为1 时算出电流放大器的交越频率(即零点),并且在交越频率处电流环的增益是功率部分增益的倒数,由此算出电流环的增益,由该增益算出补偿网络的电阻,由电阻和零点频率算出补偿网络的零点电容,再由极点频率算出补偿网络的极点电容。具体计算过程为:电感电流的下降沿=(Vo-Vin)/L;最坏情况(Vin=0),电感电流的下降沿=Vo/L;晶振坡度=Vs/Ts=Vsfs。

因为电流放大器的输出不能大于晶振的输出,即电感电流的坡度不能大于晶振的坡度,所以电流放大器的增益最大时PWM 比较器的两个输入端信号相等,此时为:

 

 s而零点处功率部分的增益为:

 因为交越频率处整个电流环为单位增益,所以电流环增益为1,电流环增益及交越频率为:

 

即交越频率为开关频率的

 

ca G ——电流放大器的增益

id G ——功率部分的增益

se V ——晶振峰峰值

rs V ——检测电阻电压

ca V ——电流放大器输出电压

sense R ——检测电阻

i R ——从电流检测到电流放大器的反向输入端

电流环的增益图(图13)和电流误差放大器的电路图(图14)如下所示。

 图 13 电流环波特图

 

图 14 电流环误差放大器

电压环设计为了工作稳定,必须进行电压环补偿。

与稳定性相比,功率因数校正电路电压环更需要的是保持输入线电流畸变小。电压环的带宽必须设计得足够低以衰减输出电容上的工频2 次谐波;电压误差放大器也必须有足够的相位裕度以在相位上跟踪输入电流,使功率因数提高。Boost电路输出部分的低频模式是电流源驱动电容的一阶电路,功率部分和电流反馈环组成该电流源,输出电容
组成该电容,该模式具有-20dB/十倍频的增益特性。如果电压反馈环在这附近闭合,它将有恒定的增益并且稳定,但在抑制2 次谐波引起的畸变方面性能差,放大器需要一个极点以减少纹波电压增益,并且使相移为90°,由此找到单位增益交越频率和极点位置。电压环的设计与要达到的THD有关,电压误差放大器输出端产生的1.5%的2 次谐波将在电路输入端产生0.75%的3 次谐波。

因为在设计中要求THD不大于3%,允许分配给电压误差放大器的输出纹波比例是1.5%。为了提供足够的相位裕度,极点设置在交越频率上,整个回路增益将在45°的相位裕度。电压环部分的设计从计算输出电容上允许的 2 次谐波电压开始,再计算电压放大器允许的输出2 次谐波,及由此算出电压放大器的2 次谐波增益值,由该增益值可以算出电压环的补偿电容。功率部分的增益和电压环的增益组成整个电压环的增益,整个电压环的增益为1 时算出交越频率。再由交越频率算出补偿网络的电阻。计算方式如下:


当 q=24 时,k<0.105 将确保软开关。当Troff

③ Lr=6.5μH,其值根据k求得;

④ Ls=30μH,确定Ls值最直接的方法是要求Vr 工作范围满足V/10

⑤ Cs=2μF,在整个开关周期内CS 可被看作是相对恒定的值。这样可保证Ls 和Cs 的谐振周期是开关周期的若干倍。
2.峰值
电流控制芯片UC3846 进行斜坡补偿电路设计举例

主电路拓扑采用双管正激电路

UC3846 的斜坡补偿选择电路根据峰值电流控制的电路图可以看到,加入斜坡补偿有两种方法,一种是将斜坡补偿信号加到电流检测信号中,前一种实现方法简单,但由于斜坡补偿信号的加入,有可能在实现电流限制功能时产生误差。
第二种方法实现时必须满足两个条件:①在开关频率附近,电压放大器的增益必须为一个固定的常数R1/R2;②当射极斜坡补偿时,电流放大器和电压放大器都必须考虑进去。参数选择采用单端正激电路设计1000W通信
电源,以UC3846 作为控制芯片,交流输入165~275V;输出50V,20A;工作频率80k Hz;匝比8/1(Np/Ns),检测电阻Rsense=0.4O;输出电感
L=40uH;晶振电容CT=1nF;死区时间0.145us。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
负载点电源(POL)稳压器面临的挑战