×
电源 > 稳流/电流管理 > 详情

业界广泛使用的LLC原理与设计

发布时间:2020-06-07 发布时间:
|
记得十年前,LLC还只是停留在大学的实验室里面。今天,LLC已经作为一种优秀的拓扑被业界所广泛的接受和使用。不得不感慨技术发展的速度。也正说明了LLC是一种非常优秀的拓扑,才能在如此短的时间里得到大家的认可。虽然今天LLC已经被广泛的使用,但工作中发现很多工程师对LLC的原理和设计不是很了解。所以开个帖子跟大家一起讨论下LLC这个拓扑的原理和设计。


要了解LLC,就要先了解软开关。对于普通的拓扑而言,在开关管开关时,MOSFET的D-S间的电压电流产生交叠,因此产生开关损耗。如图所示。 

为了减小开关时的交叠,人们提出了零电流开关(ZCS)和零电压开关(ZVS)两种软开关的方法。对于ZCS:使开关管的电流在开通时保持在零,在关断前使电流降到零。对于ZVS:使开关管的电压在开通前降到零,在关断时保持为零。

 

 最早的软开关技术是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,从而改善开关管的工作条件。这种方法对变换器的效率没有提高,甚至会使效率降低。目前所研究的软开关技术不再采用有损缓冲电路,这种技术真正减小了开关损耗,而不是损耗的转移,这就是谐振技术。而谐振变换器又分为全谐振变换器,准谐振变换器,零开关PWM变换器和零转换PWM变换器。全谐振变换器的谐振元件一直谐振工作,而准谐振变换器的谐振元件只参与能量变换的某一个阶段,不是全程参与。零开关PWM变换器是在准谐振的基础上加入一个辅助开关管,来控制谐振元件的谐振过程。零转换PWM变换器的辅助谐振电路只是在开关管开关时工作一段时间,其它时间则停止工作。

全谐振变换器主要由开关网络和谐振槽路组成,它使得流过开关管的电流变为正弦而不是方波,然后设法使开关管在某一时刻导通,实现零电压或零电流开关。

 

对于LLC而言,通常让开关管在电流为负时导通。在导通前,电流从开关管的体内二极管流过,开关管D-S之间电压被箝位在0V(忽略二极管压降),此时开通二极管,可以实现零电压开通;在关断前,由于D-S间的电容电压为0v而且不能突变,因此也近似于零电压关断。

从上面的分析可以看出,要实现零电压开关,开关管的电压必须滞后于电流。因此必须使谐振槽路始终工作在感性状态。


对于LLC,其变压器可以等效为激磁电感与理想变压器的并联。当工作在重载的情况下的时候,由漏感,谐振电容和负载构成串联谐振回路。

 

谐振频率为: 

当LLC工作在空载的时候,由漏感,激磁电感和谐振电容构成串联谐振回路。

 

谐振频率为: 

从上面我们可以看到在空载时的谐振频率要低于带载时的谐振频率。从其本质上看,LLC电路实际上就是有两个谐振点的串联谐振电路。

对于谐振电路而言,要使其呈现感性状态,必须使外加激励的频率高于谐振频率。因此对于LLC,其最小开关频率不能低于fR2. 从开关频率与谐振频率的关系来看,LLC的工作状态分为fs=fR1, fs>fR1,fR2

首先我们来看一下当fs=fR1时的情况,此时LLC工作在完全谐振状态。下面是当fs=fR1时的工作波形。

 在t0时刻前。上管Q1关断,下管Q2导通。谐振电流通过Q2流通,变压器向副边传递能量,副边二极管D2导通向负载提供能量。变压器原边被副边电压箝位,激磁电流线性上升。

 

由于fs=fR1,在t1时刻正好完成半个周期的谐振,谐振电流与激磁电流刚好相等。变压器副边无电流,二极管D2自然关断,实现ZCS。在死区时间t0-t1时段内,激磁电流给Q1,Q2的输出电容Coss1和Coss2充电,当Coss1两端的电压为0V时,Q1的体二极管导通,电流通过体二极管流通,在t1时刻让Q1导通,便可实现Q1的ZVS。

当Q1导通后,谐振电流通过Q1反向流通,谐振电流大于激磁电流,副边二极管D1导通向负载提供能量。

随着谐振电流逐渐增大,到t2时刻,谐振电流为正,顺向流过Q1,直至Q1关断。

t3-t4为死区时间,过程与t0-t1时段相同。随后下管Q2开通,开始另一半周的工作,其过程与Q1导通期间的过程相同。从上面的波形可以看到,当fs=fR1的时候,原边电流波形为正弦波,Q1,Q2都是ZVS,副边二极管D1,D2都是ZCS。

好久没更新了,接下来我们讲一下在fs>fR1时的工作情况。当fs=fR1,fs>fR1时,励磁电感不参与谐振,其特性就是一个串联谐振的特性。

 

在t0时刻前,Q1关断,Q2导通,谐振电流通过变压器耦合到副边,副边二极管D1关断,D2导通,向负载传递能量。变压器两端的电压被输出箝位,励磁电流线性增大。

到t0时刻,下管Q2关断。原边谐振电流向Coss1和Coss2充电,使Q1两端电压在死区结束前能降到0。由于fs>fR1,此时谐振电流大于励磁电流。因此谐振电流迅速减小到励磁电流。在谐振电流减小到励磁电流前,变压器副边仍有电流流动,变压器原边仍被箝位,因此谐振电流的下降斜率为(Vc-n.Vo)/Lr, Vc为谐振电容上的电压。副边整流二极管D2上的电流逐渐减小,当协整电流等于励磁电流的时候,D2的电流减小到0,实现ZCS.

 

在t1时刻前,Q1两端的电压为零,励磁电流通过Q1的体二极管流通。此时使Q1开通,Q1便是ZVS。Q1导通后,Ls,Cr开始另一半周的谐振。副边二极管D1导通。

 

在t2时刻,谐振电流反向。直至t3时刻Q1关断,开始另一半周的工作,其工作过程与t0-t3相同。

由上面的分析和波形可以看出,当fs>fR1时,LLC原边实现ZVS,副边实现ZCS,副边二极管工作在电流断续的状态。

我们再来看一下当fR2串联谐振电路的区别所在。

在t0时刻,上管Q1导通,下管关断。Ls与Cr谐振,谐振电流反向流过Q1,副边二极管D1导通,向负载提供能量。变压器原边被输出箝位,励磁电流线性增大。

 

在t1时刻,谐振电流反向,正向通过Q1。

由于fs

在t3时刻,Q1关断。原边电流向Coss2充电,使下管Q2能实现零电压开通。

 t4时刻,Q2导通,开始另一半周的工作。其过程与t0-t4相同。

对于LLC的参数设计,主要是确定:1,所希望的特性,轻载和满载的特性,取决于K和Q;2,工作点,开关频率是高于谐振频率还是低于谐振频率,主要取决于变压器的匝比;3,确定参数,漏感和励磁电感的大小,谐振电容的容值。

从前面的分析我们可以看到,LLC变换器最关键的LLC谐振槽路的设计。对于半桥网络,只提供一个频率可变,50%占空比的方波激励。对于理想变压器和输出整流网络,其增益是固定不变的。因此为了更好的研究LLC谐振槽路的特性及设计,我们需要简化LLC谐振槽路的输入输出模型。对于谐振槽路,起主导作用的是激励的基波成分。因此我们用基波等效(FHA)来等效输入模型。

上面是一个LLC的电路,我们可以等效为如下的等效电路。

对于谐振槽路的输入端,也就是Q1,Q2连接点,我们通常称为半桥中点,其电压波形为一个幅值为Vdc的方波,

经过傅里叶分解,我们可以得到它的基波为:

其有效值为

由于变压器副边绕组的电流为正弦波,对于全桥整流电路,

此分析同样适用于全波整流,因此

 

 

得到输入输出的等效后,我们可以计算谐振槽路的增益。

 

从归一化的增益公式,我们可以看到,影响LLC增益的因素有fn,k,Q. 对于fn,通常我们希望它稳态时为1。所以我们先来讨论下k的影响。我们可以改变k的数值,得到不同的Q值曲线图。

 

 

从上面不同的Q值曲线上,我们可以看到,k值越小,Q值曲线越陡峭,要获取相同增益时,频率变化越小。

那么K值是不是越小越好呢?答案是K值并不是越小越好。K值越小,意味着相对于相同的Lr, 励磁电感Lm要越小,开关管的损耗会增大。所以通常情况下,我们把K值取在3-7之间。

 

当我们确定K值后,就可以得到一组Q值曲线。我们如何去理解这个Q值曲线呢?当我们的输入和输出电压固定的时候,并且变压器变比固定的时候,根据上面的公式,我们是可以得到一个固定的我们所需要的谐振槽路的增益M。当对应于某一个输入电压时,我们需要谐振槽路提供的增益为Mx.我们可以在Q值曲线上画一条Mx的直线,Mx这条直线和Q值曲线相交的点,就是LLC在不同负载下的工作点。 

从图上我们可以看到,当负载增大时,Q值也增大,Q值曲线左移,Q值曲线与Mx相交点的频率是降低的。因此我们可以看到当负载增加的时候,LLC的工作频率是减小的。从物理意义上来讲,当负载阻抗Rac减小的时候,Lr与Cr构成的串联谐振回路上的阻抗也要减小,以维持Rac上得到的分压不变。只有通过降低频率才能使Lr和Cr构成的串联阻抗减小。因此,当负载加重时,LLC的开关频率是减小的;当负载减轻的时候,LLC的开关频率是增大的。

从上面的分析我们可以看到,当输入输出电压,负载以及变压器变比确定的时候,LLC的开关频率就确定了,也就是LLC的工作点是确定的了。那么我们如何去调整这个工作点呢?

从上面的分析可以看出,LLC的工作点与增益有关。当谐振参数确定后,唯一能改变增益的就是变压器的变比。因此要改变LLC的开关频率,只有通过改变变压器的匝比来实现。

对于LLC,还有一个很重要的参数就是Q值。我们来看一下熟悉的Q值曲线,从曲线上我们可以看到,Q值越小,Q值曲线越陡峭,Q值曲线的右侧为ZVS区域。因此我们可以找到Q值取值的最大值Qmax,它为LLC最大的直流增益Mmax与Q值曲线相交的最大值,这一点是保证在Mmax下,也就是对应最小频率下能实现ZVS的临界条件。如果选择的Q值大于Qmax, LLC将会进入ZCS区域。

可以通过对LLC谐振槽路的等效阻抗推导出Qmax.

 

在设计中,为了留有一定的裕量,我们通常取Q值为Qmax的90%-95%。

不管在哪个频率段,副边二极管始终是ZCS。对于单个次级二极管而言,电流始终是断续的。不知道你为什么觉得是0.5fr1? 0.5fr1也不一定就大于fr2,这要看Lm和Lr的比例。

对于死区时间,是llc的一个重要参数。它跟励磁电流,MOSFET的输出电容和线路寄生电容有关。要使llc实现软开关,就要使得在死区时间内,励磁电流能抽走或者充满MOSFET的输出电容和线路上的寄生电容,才能使得LLC的MOSFET的D-S两端电压能达到0v。但是如果死区时间太大的话,会使得半桥的电压利用率降低,使得原边电流增大,不利于提高效率。所以要选择合适的死区时间。不过由于LLC变压器的励磁电感比较小,励磁电流比较大,死区时间比较小。对于OCL,不知道你指的是什么。负载电流的平均值是由负载决定的,但有效值是随波形变化的。在开关频率高于谐振频率时,由于原边电流连续,副边电流相对比较平缓,有效值较低,效率相对会比较高点。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
Linear高压升压和负输出充电泵可提供低噪声双输出电源