电源 > 电源应用 > 详情

超级电容电池知识全解析

发布时间:2024-05-09 发布时间:
|

对于一些理工科的人来讲,可能对电容都或多或少有一定的了解,就算是普通的人,可能也见过电容,因为在我们的现实生活中,经常能够见到电容的影子,不过超级电容电池并不是那么多人知晓,超级电容电池是在超级电容器的基础上研发出来的一种电池,这种电池具有非常显著的特点,是比传统电池更加强势一种电池,优势非常多,在许多方面的应用非常的多,比如说在新能源汽车、有轨电车等等,都可以见到超级电容电池的影子,可以这么说,超级电容电池的出现以及发展,必将会带来再次的工业革命,极大的提高某些方面的运作能力。


超级电容电池

一、电容的种类

由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。 我们最常见到的就是电解电容。从原理上分为:无极性可变电容、无极性固定电容、有极性电容等。从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。

1、电解电容

两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中,容量大,高频特性不好。

2、独石电容

体积比CBB更小,其他同CBB,有感。

3、云母电容

云母片上镀两层金属薄膜,容易生产,技术含量低,体积大,容量小,(几乎没有用了)。

4、陶瓷电容

用陶瓷作介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做板极制成,它的特点是体积小,耐热性能好,损耗小,绝缘电阻高,但容量小,适宜用于高频电路。

5、基层电容

铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。薄瓷片两面渡金属膜银而成,体积小,耐压高,价格低,频率高(有一种是高频电容),易碎!容量低。

6、CBB电容

2层聚乙烯塑料和2层金属箔交替夹杂然后捆绑而成。

7、无感CBB电容

2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成,无感,高频特性好,体积较小,不适合做大容量,价格比较高,耐热性能较差。

二、超级电容器是传统电容的升级

平板电容器是由两个彼此绝缘的金属电极板组成,电容量与电极板的面积成正比,与电极板之间的间隙大小成反比。超级电容的结构类似于平板电容,其电极为多孔碳基材料,该材料的多孔结构使它每克重量的表面积可达几千平方米,而电容电荷分隔的距离由电解质 中的离子大小决定。巨大的表面积加上电荷间极小的距离,使得超级电容具有很大的容量,超级电容单体的容量可从1法拉至几千法拉不等。

与传统电池相比,超级电容具有许多优点:充电速度快,10秒~10分钟即可充至其额定容量的95%以上;功率密度达(102~104)W/kg,是锂电池的10倍左右;大电流放电能力强;循环使用次数达10~50万次,寿命长;安全系数高,长期使用免维护。但与主流硫电池相比仍面临成本高、能量密度低的劣势。

三、超级电容器可作为电池的替代品

在某些应用中,超级电容是电池的替代品;还 有一些应用中,超级电容为电池提供支持。有些情况下,超级电容可能无法存储足够的能量,此时就有必要使用电池了。例如,当环境能源(例如太阳)为间歇式 时,如在夜间,则存储的能量不仅要用于提供峰值功率,而且还要支撑应用更长的时间。

如果所需峰值功率超过了电池可以提供的量(如在低温下做GSM呼叫或小 功率传输),则电池可以用小功率为超级电容充电,而超级电容来提供大的脉冲功率。这种结构还意味着电池永远不会深度循环,从而延长了电池寿命。超级电容存 储物理电荷,而不是像电池那样的化学反应,因此超级电容实际有无限的循环寿命。

当超级电容从一只电池充电来提供峰值功率脉冲 时,各个脉冲之间存在着一个重要的间隔,如果脉冲相距过近,则让超级电容总是处于充电状态会更有效率。但如果脉冲间距不太近,则能效更高的办法是在峰值功 率事件以前为超级电容充电。

这个间隔取决于多种因素,包括超级电容在达到均衡泄漏电流以前吸纳的电容、超级电容的自放电特性,以及电路为了提供给峰值功率 事件而从超级电容拉出的电荷。只有当你预先知道峰值功率事件的来临时间,这种选择才是有效的,而不能用于对不可预测事件的反应,如电池失效或外部刺激。

四、超级电容电池与超级电容器

超级电容电池又叫双电层电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。超级电容器由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。

超级电容是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。

五、超级电容电池的好处

1、充电时间

目前充电桩概念很火,但是充一次要五个小时。这个是制约锂电池汽车的最大难题。石墨希超级电容短的让人吃惊,如果和充电桩结合起来,这个效率最起码是锂电池不能比的。根据株洲中车的说明,根据不同的容量和额定工作电压,3伏/12000法拉超级电容在30秒内即可充满电,2.8伏/30000法拉超级电容充电时间在1分钟内。

相比活性炭超级电容,石墨烯/活性炭复合电极超级电容能量更大,寿命更长。据说这一技术代表了目前世界超级电容单体技术的最高水平,技术研发持续走在世界前列。

2、安全性

电池应该都有爆炸的风险。目前各类电池安全措施都很好,除了伪劣电池,爆炸的可能性都很低。在锂离子电池中,带有最大的危险是中间的有机电解质溶剂,以易燃的醚类最多。当电池因为任何原因短路时,电池内能量会在短时间以热的形式释放出来,点燃这些做为溶剂的醚类,引发爆炸。

锂离子电池,由于夏天车内温度较高,所以发生爆炸或自燃的可能性很大。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有;放火上烧,不锈钢外壳快烧红了,也没发生爆炸(一网友的描述)。和中国中车株机公司技术中心副总监、宁波超级电容研究所所长阮殿波描述的差不多,“无污染、无爆炸”。

3、续航里程

2014年12月26号,美国电动汽车制造商特斯拉发布了两年前停产的第一代车型Roadster的升级版,续航里程达到644公里,高出原版60%。特斯拉CEO马斯克称,特斯拉的高性能石墨烯电池,相比目前的容量增长近70%。国内某网站也曾宣称2015年上半年有望量产石墨烯锂电池,但是至今未有下文。

一位网友实际测试的结果是“以我们测试的这天为例,早上满电出发,到下午还车,由于驾驶比较激烈,所以虽然一共只开了140多公里,最后剩余电量就只有20%左右。我个人推测在北京这样的大城市使用,它的实际续航里程应该在250-300km公里左右”。据凤凰网报道,一家以色列公司StoreDot达到目标正在发明一项技术使电动车可以在仅仅5分钟的充电后行驶几百英里。目前已运用在消费者手机上,并有望日后应用在电动车上的StoreDot电池。

但是在电动车的应用研发上可能需要更长时间。即使一切顺利,至少五年内StoreDot的电池都不太可能完成其电动车应用的商业化进程。根据国内一论文结论,“如果综合考量材料成本、生产工艺、加工性和电化学性能,笔者认为,石墨烯或者石墨烯复合材料实际用于锂电负极的可能性很小产业化前景渺茫。”

在石墨希锂电池未量产之际,石墨希超级电容面世了,3伏/12000法拉超级电容适合用于有轨电车主驱动,单次充电行驶里程可达6公里,2.8伏/30000法拉超级电容适合用于无轨电车主驱动,单次充电行驶里程可从目前的4~6公里提高到8~10公里。论续航能力,超级电容能量密度低,还有提高空间,但是用在公交车上是绰绰有余了。但是网上还有新闻,中上汽车董事长谢F安介绍,超级电容充电3分钟左右可续驶20公里。这个没有经历过,具体能续航多少没有确切数据。

六、超级电容电池的两个电容形式

实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。

1、法拉第赝电容器

法拉第赝电容器也叫法拉第准电容,是在电极表面活体相中的二维或三维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附或氧化还原反应,产生与电极充电电位有关的电容。这种电极系统的电压随电荷转移的量呈线性变化,表现出电容特征,故称为“准电容”,是作为双电层型电容器的一种补充形式。原文地址:http://www.pikacn.com/news/201611/5284.html

法拉第准电容的充放电机理为:电解液中的离子( 一般为H+或OH-)在外加电场的作用下向溶液中扩散到电极/溶液界面,而后通过界面的电化学反应进入到电极表面活性氧化物的体相中;若电极材料是具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新回到电解液中,同时所存储的电荷通过外电路释放出来。

2、双电层电容器

一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。Helmholtz首次提出此模型。

能量是以电荷的形式存储在电极材料的界面。充电时,电子通过外加电源从正极流向负极,同时,正负离子从溶液体相中分离并分别移动到电极表面,形成双电层;充电结束后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。在放电时,电子通过负载从负极流到正极,在外电路中产生电流,正负离子从电极表面被释放进入溶液体相呈电中性。


上一页 1 2 下一页

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
英利称今年扩产计划不变