×
电源 > 电源硬件技术 > 详情

一种多功能输出开关电源

发布时间:2020-06-10 发布时间:
|


1  引言

    近年来,随着电力电子技术的不断发展,高频开关电源以其高效率、高性能、低重量、小体积,在以往使用线性电源的场合中也获得日益广泛的应用[1]。在一些工业场合(例如,在电力系统继电器检测中)需要提供交流、直流电压源和电流源,而且要求调节范围广,纹波低。如果采用多台功能单一电源设备,体积和重量都会增加很多,不经济,也不能满足工作的要求。因此研究开发多功能、宽范围可调节的开关电源很有意义。

    本电源系统采用开关电源技术和数字控制方案,可以作交流电压源、直流电压源、交流电流源和直流电流源,作为电压源输出调节范围为1~250V,作为电流源调节范围为1~30A,工作频率在0~400Hz。输出可选择。

2  主电路结构

    电源主电路如图1所示,分上下两部分,上部分为电压源部分,下部分为电流源部分,每部分采用两级结构,交流输入整流滤波后,先经过DC/DC变换,再通过逆变器输出。其中DC/DC采用半桥电路用来提供稳定的直流母线电压,并隔离输入级和输出级。逆变部分采用了常规全桥逆变电路,适合于较大功率的应用场合。输出采用两级LC滤波器滤除高频纹波。Lc1、Lc2、Lc3是共模抑制器。电压源前后级的高频开关动作很容易引起两级间的互相干扰,在母线电压比较高的时候尤其明显。因此在两级之间串接共模抑制器Lc1,用来隔离其相互间干扰。Lc2,Lc3接在输出端和负载之间的,作用和Lc1类似,用于抑制高频共模分量通过负载。所不同的是电压源前级DC/DC采用全桥整流,电流源采用全波整流。

图 1  前 级 DC隔 离 电 源 与 逆 变 电 源

3  控制原理与结构

    对于DC/DC级的控制,本文采用SG3525控制芯片,简单可靠,成本低。

    后级逆变器采用了双极性SPWM控制,如图2所示。通过高频三角波和基准正弦波的比较得到控制开关管的PWM波形。正弦基准信号的频率与输出正弦波相同,其幅度的变化可以调制开关的占空比D。幅度调制比ma定义为[2]

     ma=Vsm/Vcm   (1)

图2  三 角 波 与 逆 变 器 开 关 控 制 波 形

式中:Vsm是正弦基准信号峰值;

      Vcm是三角波的峰值。

    逆变输出正弦电压峰值Vom和直流母线电压Vd的关系为

    Vom=ma×Vd,ma≤1(2) 

    图3是具体控制原理。为消除输出谐波,电路采用了电压、电流双环控制,其中,Vf为反馈电压,If为反馈电流。电压调节环的输出作为电流环的比较基准,电流环输出误差信号与三角波信号比较得到SPWM信号。由IR2110芯片构成驱动电路,由此输出相位互补的两路SPWM信号分别驱动四个开关管。为防止上下桥臂直通,两路SPWM信号之间必须设置死区。保护电路起到监控Vf、If的作用,如果幅值超出阈值,保护电路将关闭驱动信号。

图3  逆 变 级 控 制 电 路

4  多功能输出的实现

    在此电源系统中,电压源和电流源的控制采用同一控制电路,通过继电器切换到不同的工作模式。电压源工作时,继电器K1合,K2开(如图3所示),采用电压、电流双环调节控制,基准信号为正弦信号,输出交流电压;基准为直流电平,输出直流电压。电流源工作时,K1开,K2合,电压调节环变为跟随器,只通过电流环调节,基准为正弦信号,输出交流电流;基准为直流电平,输出直流电流。电压源和电流源驱动信号切换是通过K3来实现的,在电压源工作方式,关断电流源的前级;在电流源工作方式,关断电压源的前级,这样可以防止干扰,提高电路的可靠程度。以上的K1、K2、K3是由数控电路给出的。

5  占空比限制与输出交流电压的削顶

5.1  PI调节器输出限幅的考虑

    由于所采用的专用驱动芯片IR2110是通过自举供电方式来驱动桥臂上管的(如图4所示)。所以,在上、下管驱动信号恒低或恒高时,给上管供电的自举电容C1能量得不到补给。当电容上的能量放完后,上管关断,就会出现此桥臂无驱动信号,无输出的现象。尤其是直流电压时,常有这一现象。

图4  逆 变 级 驱 动 电 路

    在逆变器控制中,PI调节器输出的幅度如果超过三角波的幅度,就会出现过调制的现象,此时,PWM驱动脉宽会过窄或过宽,还会使上述自举电路工作不正常。因此,必须对占空比的最大值与最小值加以限制。

    具体方法是,可以在PI调节器的输出端作一定的限幅(见图3),使控制电路不出现过调制的情况,限制PWM的最大、最小占空比,使IR2110的自举电容C1能及时充电。采用限幅的另一个好处是消除了由于IR2110自举失败导致的电路损坏,提高了可靠性。

5.2  输出电压不正常削顶的消除

    逆变器控制电路的限幅会使输出波形削顶。但在交流输出未达到限幅值之前,可能首先出现明显的单边削顶(例如在正半波的峰值处)。主要原因是三角波不对称,存在直流偏置,在与PI调节输出比较时,出现一边被限幅,造成输出单边削顶现象。提高母线电压,使实际需求的占空比变化范围缩小,可以消除输出削顶现象。

    但是,随最大占空比的下降,调制比下降更快。这会降低母线电压的利用率,导致逆变级的容量扩大。本文的电路用低偏压、低噪声精密运算放大器来产生三角波,同时采用纠偏方法消除直流偏置、确保三角波的对称性,提高了母线电压的利用率。

    为确保电路正常工作,同时输出波形不削顶,在此电路中设定最大占空比为0.85,相应的最大调制比为0.7。 

6  电流源母线电容的选取

    母线的电容值可以根据式(3)计算

       C=  (3)

式中:C是母线输出电容;

      Vs是前级整流输入电压;

      D是其中一管导通的占空比;

      L是母线滤波电感

      n是原副边绕组的匝比;

         ΔVc是输出纹波电压;

      f为前级工作频率。

    但是逆变器输入电流并不是真正的直流电流,除直流成分外,还含有双倍于输出频率的交流分量和高频分量。对电流源在输出电流为最大时,这些高频分量会很大,需要母线提供很大的高频纹波电流,所以在尽量加大电解电容的同时,应多采用高频性能优越的电容。不仅可以满足后级高频纹波电流的要求,同时也可以减小后级高频分量对前级的影响。

7  电路实验波形

    图5是电压源满载下输出200V交流有效值时的波形,波形THD<2%。图6是电流源满载下输出30A交流有效值时的波形,波形THD<1%。

电 压 :100 V/格 ; 时 间 :10 ms/格

图5  电 压 源200 V交 流 有 效 值 输 出 波 形

电 流 :50 A/格 ; 时 间 :4 ms/格

图6  电 流 源30 A交 流 有 效 值 输 出 波 形

8  结语

    本文电压源和电流源两部分的逆变级控制共用同一控制电路,通过信号切换选择电压源或者电流源输出。每一部分采用前级DC/DC隔离电源与桥式逆变电路相结合,改变基准信号可以使逆变器选择输出交流或直流。通过严格控制三角波的对称性与合理确定调制比,能确保电路的正常工作和提高母线电压的利用率。最后通过一台试验样机验证了以上的设计。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
升压变流器的几点调试经验