×

振动能量收集电源电路设计

发布时间:2023-11-03 发布时间:
|

  摘 要: 利用凌力尔特推出的电源集成芯片LTC3588-2,设计出适用振动能量收集的高集成度电源电路。根据压电材料能量收集器特性,建立了以理想电流源为基础的电路模型,用于电路仿真。通过调节收集器自身的振动频率,以及使用具备微弱泄漏电流特点的电容,使振动能量到电能的转换效率最大化。测试结果表明,该电源可以断续输出5 V的稳定电压,为低功耗、短工作时间的无线传感器设备供电。

  0 引言

  近些年,无线传感器网络发展迅速,被广泛应用在环境、安全、过程控制和健康监视等领域,改善了资源的利用效率,实现了自然环境和工程控制的智能化,提高了公共领域的安保水平,深刻影响着人类社会的方方面面。但是,大量的无线传感器节点也带来了一些亟待解决的问题,特别是对能源的需求。而且,在许多应用领域,为了降低成本,无线传感器节点被设计为低成本、低维护周期的设备,这就对传感器校准、恶劣环境下的封装设计、特别是电源供电提出了更大的挑战。随着科技的发展,虽然电池技术性能已经得到很大改进,但是依然无法跟上无线传感器对能源需求的增长速度。基于这个原因,从外部环境获取能量给无线传感器供电成为当前的研究热点。正在开发的各种新型环境能源主要包括太阳能、热能、振动能和射频能。振动能量作为自然环境中普遍存在的一种机械能,受外界条件限制较少,收集利用便捷,是无线传感器网络替代能源的理想选择[1]。

  1 振动能量收集原理

  振动能量收集器通常采用压电材料实现振动能到电能的转换。将振动能量收集器以悬梁臂的结构固定在振动源上,当产生机械振动时,压电晶体发生形变,在回路中产生电流,随着振动方向的变化,电流的方向也跟着改变。因此,可以建立以理想电流源为基础的电路模型,如图1所示。它包含一个正弦电流源i(t)、一个内部电容Cp和一个内部电阻Rp。其中,i(t)=Ipsin(2πft),Ip的大小由振幅决定,f表示振动频率,Cp和Rp是与振动频率没有关系的常量,而且Rp的阻值总是非常大。过去的研究表明,压电材料的输出电压(电流)取决于材料的几何尺寸、压电特性、机械振动强度和输出阻抗[2]。

  2 振动能量收集优化分析

  由于振动能量收集器输出的是交流电压(电流)信号,所以首先要使用整流电路将其转换为直流电压,如图2所示。其中,Cs是存储电容,用于累积收集的电量,i0(t)表示整流电路输出电流值,Vs表示整流电路输出电压值

  由电路分析可知,整流电路的平均输出电流为:

  此时,Vs称之为振动能量收集器整流输出电压的最优值,影响因素包括Ip、f和Cp。而Ip又取决于振动幅度,f代表振动频率,Cp由压电材料特性决定,可以认为是一个常量。由此可以推出,振动能量收集器输出的交流电压(电流)信号存在一个最优值,且由振动幅度、频率和压电材料特性决定。所以,振动能量收集器的生产厂商一般会给出特定振动频率下,收集器输出功率与工作电压和振动幅度的关系曲线。以测试采用的MIDE公司生产的VOLTURE系列振动能量收集器V25W为例,振动频率为40 Hz时,振动幅度分别为0.25 g、0.375 g、0.5 g和1.0 g的情况下,使输出功率最大化的等效开路电压分别为4 V、7 V、8 V和15 V。

  3 振动能量收集电源设计

  收集到的电能转换为直流后,还需要经过稳压电路才能供负载使用。传统的方法中,整流电路和稳压电路采用整流二极管、存储电容、保护二极管和三端稳压器等分立器件组合而成,电路调试难度大,转换效率低下[4]。凌力尔特公司最近生产出一款专用于振动能量收集的电源芯片LTC3588-2,内部集成了整流桥、稳压及控制电路,由它构成的电源电路非常简单,如图3所示。其中,PZ1和PZ2引脚连接振动能量收集器,D0和D1引脚用于选择输出电压值(3.45 V、4.1 V、 4.5 V、5.0 V可选),此电路选择为5.0 V输出,Pgood引脚作为稳压电源“准备好”的提示信号。

  电路使用的元器件中,比较关键的是输入端存储电容Cs的选择。在振动能量收集电路中,存储电容最重要的特点是低泄漏电流,而等效串联电阻值并不重要,考虑泄漏电流、充电能力和电气参数稳定性等指标对电路的影响,TRJ系列钽电容是振动能量收集的最佳选择[5],所以Cs选择容量为22 ?滋F、耐压25 V的TRJ钽电容。

  4 测试与结论

  使用振动台作为振动源模拟环境振动,选用振动频率40 Hz、振动幅度1.0 g的MIDE公司的V25W振动能量收集器以悬梁臂的结构固定在振动台上,并在其末端粘贴约16 g的重物,用于将收集器自身频率调节到40 Hz,以匹配振动源频率。

  振动台起振后,振动能量收集器输出的交流电压非常平滑,符合正弦信号的特征,其峰峰值大约13 V,非常接近输出功率最大时的开路电压,信号周期25 ms,频率与振动源频率一致。

  LTC3588-2将交流电压转换成直流电压后给输入端存储电容Cs充电,Cs两端电压Vs慢慢爬升,一旦越过上升沿门限电压(16 V),芯片打开其内部稳压电路,将Cs上的电荷搬移到输出端存储电容C2上,输出电压VO瞬间爬升到5 V,给负载供电。与此同时,“准备好”信号Pgood置为高电平,提示稳压电源可以使用。当Vs由于电荷的搬移下降到下降沿门限电压后,芯片关闭其内部稳压电路,停止搬运Cs上的电荷,使Cs两端的电压再次慢慢爬升。

  测试结果表明,合理安装振动能量收集器并连接到开发的电源电路板,能够产生断续的5 V稳定电压,可以广泛用于低功耗、短工作时间的无线传感器设备上。

  参考文献

  [1] 李金田,文玉梅.压电式振动能量采集电源管理电路分析[J].电源技术,2012,36(4):606-610.

  [2] OTTMAN G K. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J]. IEEE Transaction on Power Electronics,2002,17(5):1781-1783.

  [3] FANG H B, LIU J Q. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting[J]. Microelectronics Journal, 2006,41: 1280-1284.

  [4] LU C, TSUI C, KI W. A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications[J]. Circuits and Systems, 2007, ISCAS 2007,1(5):1349-1352.

  [5] 文玉梅,叶建平,李平,等.一种振动自供能无线传感器的电源管理电路[J].电子技术应用,2011,37(11):84-88.

  [6] RADOVAN F, MIROSLAVE J. Storage capacitor properties and their effect on energy harvester performance[R]. AVX, A Kyocera Group Company, 2013.

 


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
七种基础模拟电路分享