×
模拟电路设计 > 详情

0.6 V CMOS轨至轨运算放大器

发布时间:2020-07-03 发布时间:
|


0 引言
随着便携式消费电子产品应用的持续增长,降低功耗和低电源电压成为CMOS运算放大器的设计趋势。在低压下工作时,一般采用互补差分输入对来实现轨至轨的信号输入,但是,其电源电压被限制在必须大于两倍阈值电压与两倍过驱动电压之和。
为了使运算放大器能工作在更低电源电压下,现有的方法是,采用体驱动晶体管、双p沟道差分输入对、输入信号重整、弱反型区和输入共模电平偏移技术。体驱动晶体管和弱反型区晶体管的跨导较小且频率响应性能较差。对当输入共模电平低时,2个P沟道差分输入对都同时开启,这样会导致差分对的尾电流在共模电平高和低时不相等,因此,这种电路在轨至轨输入信号下很难实现恒定增益。输入信号重整电路用来控制共模(CM)电平,但是由于反馈的引入,可能会导致信号的非线性。共模电平偏移是采用标准CMOS工艺制程来实现轨至轨输入信号的好方法,但是要在超低电源电压下工作(例如0.6 V),该还电路需要进行一些改进。

1 路结构和工作原理
如图1所示,普通的互补差分输入对虽然能够获得轨至轨输入信号,但是,其电源电压不能低于2(VTH+VOD),其中表示VTH阈值电压,VOD表示过驱动电压,可以看出在中间部分,会出现截至区(Dead Zone)。


图2是动态共模电平偏移(Level Shft)的电路结构示意图,其与文献的不同之处是,对输入共模电平在中间或者低电平时,仅仅PMOS差分对开启,对输入共模电平在高电平时,NMOS差分对开启。在设计过程中,表明这种电路结构更加适合于超低电源电压下工作。互补差分对的输入共模电平可以表示为:

其中Vin,n,cm和Vin,p,cm分别是内部NMOS和PMOS差分对输入端的共模电平,Vin,cm是外部输入端Vin1和Vin2的共模电平。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
基于二极管或者MOS管的反向保护电路设计