×
模拟电路设计 > 详情

基于Toeplitz方程的改进广义预测PID控制

发布时间:2020-07-03 发布时间:
|

引言

PID控制技术是目前应用最广泛的控制技术,PID控制是一种应用历史悠久、工业界比较熟悉的简单控制算法。自1992年Hagglund提出预测PI控制器(Hagglund,1992)的思想以来,预测PID算法得到了逐步的发展和完善,并成功的应用在一些复杂对象的控制上。控制理论由于它产生的巨大经济效益吸引了越来越多的关注,大量的先进控制算法应用在纷繁复杂的工业过程中,也缩小了理论和实践之间的差距。

预测算法和PID结合在一起的控制器。PID控制器和过程的滞后时间无关,而预测控制主要依赖过程的滞后时间,根据以前的控制作用,来给出现在的控制作用。而这种PID控制算法将PID的简单性、实用性、鲁棒性和模型预测控制算法的预测功能有机的结合起来了。

本文运用Toeplitz方程求解G潘图方程,减少了预测控制计算负担,缩短了预测控制器在线优化时间,同时解决了系统时滞引起的控制问题,整定了PID控制参数,达到了预期的效果。

问题的提出

近几十年来,控制理论由于它产生的巨大经济效益吸引了越来越多的关注,大量的先进控制算法应用在纷繁复杂的工业过程中,也缩小了理论和实践之间的差距。另一方面,传统的PID控制器,由于其简单稳定易操作的特性,仍然在控制市场占有相当大的使用份额。所以在现今全球竞争日益激烈的市场环境下,通过先进控制改进传统的控制器,优化传统的控制方法来获取经济效益提高企业竞争力,已成为一种趋势。

但是复杂工业过程存在着难于建模、关联复杂、对象结构与参数时变、干扰与环境不确定、要求与约束多样性等特点,传统的最优控制基于对象的精确数学模型,它在工业环境中并不适用,这已为工业过程的实践所证实,基于优化的控制显然优于单纯调节。所以就带来了问题:如何以合适的方式将优化结合到动态控制中,形成适应于复杂工业过程的优化控制模式,预测控制就满足了这点要求。

本研究课题将广义预测控制和经典PID控制方法相结合,用预测优化原理解决大时滞系统的控制难题。通过对Diophantine方程快速求解,避免了传统GPC算法中递推求解Diophantine方程的繁杂过程。

基于Toeplitz方法改进的GPC

2.1GPC的基本表达

首先,性能指标J函数表达如下:

(1)

其中,e(i)是对象输出和参考平滑曲线之间的误差,即。N是预测时域,M是控制时域。是控制加权常数。

可以把以上方程写成向量形式:

(2)

其中,是预测输出误差向量,Y是未来输出向量,是未来控制增益向量。

2.2介绍Toeplitz方程

给定一个单输入单输出被控对象传递函数模型:

(3)

其中,和是差分后移算子的多项式:

(4)(5)



引入增益模型:

(6)

其中,

引入卷积矩阵和汉克尔矩阵,



其中,

所以根据和的定义式可以将式改写成:

(7)


同理,式子右边也可以进行变换,最后得到:



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
基于二极管或者MOS管的反向保护电路设计