×
模拟电路设计 > 详情

实例说明晶体二极管在电力中的应用

发布时间:2021-07-27 发布时间:
|

应用实例1:半导体变流技术

变流技术是一种电力变换的技术。通常所说的“变流”是指“交流电变直流电,直流电变交流电”。例如,常见的充电器,就使用了交流电变直流电的变流技术。

620)this.width=620;" onclick="window.open(this.src)" style="cursor:pointer">

图5-3所示是三相半波不可控整流电路,任何时刻只有瞬时阳极电压最高的一相管导通,按电源的相序,每管轮流导通120°。

应用实例2:开关电源

开关电源中的应用电路如图5-4所示,VT1和开关变压器组成间歇振荡器,充电器加电后,220V市电经VD1半波整流后在VT1的C极上形成一个300V左右的直流电压,经过变压器初级加到VT1的C极,同时该电压还经启动电阻R2为VT1的B极提供一个偏置电压。由于正反馈作用,VT1的Ic迅速上升而饱和,在VT,进入饱和期间,开关变压器次级绕组产生的感应电压使VD2导通,向负载输出一个约9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD3整流、C2滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD2的稳压值,VD2便导通,此负极性整流电压便加在VT1的B极,使其迅速截止。VT1的截止时间与其输出电压呈反比。VD2的导通/截止直接受电网电压和负载的影响,电网电压越低或负载电流越大,VD2的导通时间越短,VT1的导通时间越长;反之,电网电压越高或负载电流越小,VD3的整流电压越高,VT1的导通时间越长,VT1的导通时间越短。

620)this.width=620;" onclick="window.open(this.src)" style="cursor:pointer">

应用实例3:双向电力电子开关

双向电力电子开关应用电路如图5-5所示,在斩控式交流调压电路中电力电子开关必须满足:开关是全控的,可以控制导通也可以控制关断,所以必须采用全控型器件。电力电子开关必须是双向导电的,因此单个器件是无法满足要求的,必须用多个器件组合而成。开关频率较高,一般都在90kHz以上。

620)this.width=620;" onclick="window.open(this.src)" style="cursor:pointer">

只用了一个可控元件,同时由4个二极管组成桥式连接,使得无论外电路电流方向如何 总是流入晶体管的集电极。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
PLC编程算法