×
模拟电路设计 > 详情

浅谈如何利用光耦合器提高PV逆变器的性能

发布时间:2020-07-06 发布时间:
|

太阳能(PV)逆变器将太阳能板产生的直流电压转换成交流电压,可用于公共电网和商用电器。光耦合器为此一过程重要组成部分,因其能防止转换过程中因元件损坏或传输失真造成的高电压和瞬变电压。本文将探讨提高光耦合器功率缓衝,使其不易受到杂讯干扰的设计技术。

光耦合器助臂力太阳能逆变器可靠度大增

将太阳光转化成能量的过程中,太阳能面板通常会产生高电压的直流输出。将直流输出转换成高电压的交流输出,可将线路损耗降至最低,并让输出的电力进行长距离传输,既可传输到电力公司电网,亦可传输到安装太阳能板的建筑物内部电网。直流对交流(DC-AC)的转换,係由称为太阳能逆变器的子系统所完成,其既可设计成单一的太阳能面板,亦可用作对太阳能面板阵列进行转换的中央单元。

如果太阳能逆变器安装于单一的太阳能面板,此称为微型逆变器(图1),此为较小型的解决方案,适用于住宅和一般建筑物,其太阳能板的电力可直接用于建筑物的内部网路和商用电器。此种情况下,通常逆变器工作功率小于300瓦(W)。

图1 安装于单一PV板上的微型逆变器架构

当太阳能逆变器作为支援数个PV板的独立单元时,称为中央逆变器(Central Inverter)(图2),其块状图式本质上与微型逆变器相同,只是多一个电池系统,可存储多个太阳能板的能量,然后输送到公用电网。中央逆变器的工作电压,一般均在1千瓦(kW)或者以上。

图2 支援PV板阵列的中央逆变器架构

当光耦合器整合到驱动直流对直流(DC-DC)和DC-AC转换器的模组中,如图1和图2所示。在此两种类型的太阳能逆变器中,光耦合器皆为系统的重要组成部分,可防止线路一端的高电压和瞬变电压造成另一端的元件损坏或传输失真。

当用于隔离高杂讯、高电压和高电流的电路与低电压控制电路时,光耦合器可提高性能,让印刷电路板(PCB)尺寸变得更小,且电路设计更容易。将高电压元件与低电压控制电路隔离,亦有助于保护安装、操作或修理太阳能逆变器的电网员工或维修人员。

适用于太阳能逆变器的闸极驱动光耦合器,可驱动高速金属氧化物半导体场效电晶体(MOSFET)和绝缘闸双极电晶体(IGBT),并能优化启动性能、提高杂讯免疫力。

能驱动1,200伏特(V)/20安培(A)IGBT和MOSFET的闸极驱动光耦合器,其高等级的共模抑制(CMR),使抗噪能力更强;100奈秒(ns)的脉宽失真(PWD)可提高电源效率,让设计人员使用更小的滤波器,从而减小设计尺寸,降低成本;PWD级支援1,414V工作电压峰值,从而满足1,200V IGBT切换。

简述光耦合器操作方式

可做为控制功率MOSFET或IGBT闸极的功率缓衝器(Power Buffer)的光耦合器,以正电压(VOH)形式,为功率半导体的闸极提供峰值充电电流,从而开启设备。光耦合器将驱动设备的闸极拉至零电压(VOL)或更低,以便关闭闸极。

MOSFET或IGBT通常以半桥拓扑配置排列。每个高压侧N通道MOSFET/IGBT的泄极连接到电源的正电极端,而每个源极连接到低压侧电晶体。低压侧电晶体的源极连接到系统电源的负电极。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多