×
工业控制 > 工业自动化 > 详情

基于光纤的温度传感器

发布时间:2021-01-11 发布时间:
|

温度传感器是基于一个基本的物理量“温度”,自然界中的一切过程无不与 温度!密切相关。 从伽利略发明温度计开始, 人们开始利用温度进行测量。

温度传感器是最早开发、应用最广的一类传感器。但真正把温度变成电信号的传感器是由德国物理学家赛贝发明的, 就是后来的热电偶传感器。 50 年以后,德国人西门子发明了铂电阻温度计。 在半导体技术的持下, 本世纪相继开发了包含半导体热电偶传感器在内的多种温度传感器。 与之相应, 根据波与物质的相互作用规律, 相继开发了声学温度传感器、红外传感器和微波传感器。 而光纤自20 世纪70 年代问世以来, 随着激光技术的发展, 从理论和实践上都已证明光纤具有一系列的优越性, 光纤在传感技术领域中的应用也日益受到广泛重视, 随着科学技术的发展, 涌现了许许多多的光纤温度传感器, 并且可以预料, 在新技术革命的浪潮中, 光纤温度传感器必将得到广泛的应用, 并发挥出更多的作用。

1 光纤温度传感器的原理

光纤温度传感器的基本工作原理是将来自光源的光经过光纤送入调制器, 待测参数温度与进入调制区的光相互作用后, 导致光的光学性质( 如光的强度、波长、频率、相位等) 发生变化, 称为被调制的信号光。 再经过光纤送入光探测器, 经解调后, 获得被测参数。

光纤温度传感器种类很多 , 但概括起来按其工作原理可分为功能型和传输型两种。 功能型光纤温度传感器是利用光纤的各种特性( 相位、偏振、强度等) 随温度变换的特点, 进行温度测定。 这类传感器尽管具有 传!、 感!合一的特点, 但也增加了增敏和去敏的困难。 传输型光纤温度传感器的光纤只是起到光信号传输的作用, 以避开测温区域复杂的环境。 对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。 这类传感器由于存在光纤与传感头的光耦合问题, 增加了系统的复杂性, 且对机械振动之类的干扰比较敏感。

2 光纤温度传感器的研究现状

目前已研制成多种光纤温度传感器。 下面介绍几种主要的光纤温度传感器的研究现状, 其中有代表性的有光纤Fabry- perot 干涉型温度传感器、半导体吸收型光纤温度传感器、光纤光栅温度传感器三种。

2.1 光纤Fabry- perot 干涉型温度传感器

此传感器的依据是利用温度改变Fabry- perot干涉仪的干涉条纹来测量外界温度。 在现有报道的光纤法珀温度传感器中, 主要采用2 种技术方案, 其一是采用外径大于125 nm 的玻璃毛细管封装, 由2个光纤的端面构成光纤法珀腔并采用胶封的方式固定于温度敏感材料中, 另外一种最近发展起来的技术是采用MEMS 工艺制作光纤法珀腔 。 但是这两种方案工艺都比较复杂, 一致性难以保证, 并且胶的老化和蠕变对于传感器的性能影响较大。 为了解决该问题, 张文涛等人提出了一种新型金属封装的光纤法珀温度传感器, 其结构如图1 所示。

光纤法珀温度传感器结构图
图1 光纤法珀温度传感器结构图。

该传感器采用温度敏感的金属材料作为法珀腔的腔体, 利用高精度位移机构将光纤两端插入金属毛细管中形成低精细度的光纤法珀腔。 光纤在金属管的两端通过胶粘的方式固定。 当外界温度发生变化时将直接导致金属毛细管的热膨胀, 带动插入金属管内的光纤移动, 从而引起光纤法珀腔的腔长变化。 采用这种方案, 避免了胶直接作用于光纤法珀腔腔体上, 消除了由于涂胶不匀引起的应力不均匀现象, 简化了封装工艺。 同时, 金属毛细管的长度即为该温度传感器的标距, 它将决定传感器的灵敏度。 该传感器的核心结构为光纤法珀干涉腔( F- P 腔) 。 在使用低相干光源时, 由于低相干光源都具有一定的光谱宽度, 因此可看成是多个波长, 1, 2, ?, n, 的迭加。 光入射到F- P 腔后, 不断地在F- P 腔的2个端面之间进行反射和透射, 形成多光束干涉。 在文中所研究的端面反射率很低, 反射光的干涉可看成双光束干涉, 当F- P 腔的腔长是传输光半波长的整数倍时, 反射光强最大。 通过对峰值波长移动量的测量即可得到待测温度的变化情况, 该传感器具有灵敏度与传感器的标距成正比的特性, 可以通过改变标距的方法方便地调整传感器的灵敏度。 同时, 该传感器制作工艺简单、性能稳定、具有很高的实用价值, 但是此传感器所适用的温度并不高。

柯涛等人通过在单模光纤SMF28e 后有轴心偏移地熔接一段特种光子晶体光纤( MM- HNA-5) 制作了一种全光纤微型法- 珀( F- P) 干涉仪, 原理如图2 所示。

微型光纤F- P 干涉仪原理图

图2 微型光纤F- P 干涉仪原理图。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
采用无线通信技术的新型数控系统