×
工业控制 > 工业自动化 > 详情

基于USB接口的实用型数据采集卡设计

发布时间:2021-02-24 发布时间:
|

1 引言


随着低成本高性能的计算机资源普及运用、大规模集成电路技术和通讯技术的飞速发展,数字化测量平台逐渐成为测量仪器的基础。所有测量测试仪器的主要功能由数据采集采集与控制、数据分析与处理、结果的表达与输出三大部分组成。高质量的A/D采集卡及调理放大器是影响其发展的一个重要因素。本文实现了基于USB接口的实用型数据采集卡的设计。

2数据采集卡的结构设计

本文采用集散型的系统结构,定位为高速、双通道的数据采集系统。整个系统采用模块化技术,各个模块通过总线连接。设计时将整个系统划分为四个相互关联的有机部分,即信号调理模块、数据采集模块、CPLD控制模块和软件操作平台。模块间连接关系如图1所示。


图1 模块间的连接

高速数据采集卡的设计的关键是高速ADC的选择和经采样得到的高速数据如何被送到计算机里进行处理,在本章中将详细介绍关于高速数据采集卡的各模块的设计。高速数据采集卡硬件部分的设计从功能上主要包括信号调理模块、高速模数转换模块、CPLD控制模块以及与计算机接口部分电路组成。

2.1 信号调理模块的设计

在高速数据采集系统中,现场输入信号是高频的模拟信号,信号变化的范围都比较大,如果采用单一的增益放大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应地调整放大器的增益。在自动化程度较高的系统中,希望能够在程序中用软件控制放大器的增益,AD8321正是这样一种具有增益可编程功能的芯片。AD8321是美国AD工公司生产的一种增益可编程线驱动器,可广泛应用于多种领域。它具有频带宽、噪声低、增益可编程且易于与单片机进行串行通信等优点,十分适合在数据采集系统做前置放大。本文的高速数据采集系统原理图如图2。


图2 高速数据采集系统原理图

在此系统中,高频模拟信号线输入到AD8321,经程控放大后再输送到具有采样保持功能的模数转换器中,因为采样频率为高频,所以在A/D后接在EZ-USB FX2芯片,然后再连到计算机上。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
莱姆电流传感器在数字伺服驱动器中的应用及全数字伺服电流环设计