×
汽车电子 > 详情

国产毫米波雷达厂商的桎梏与突破

发布时间:2020-09-08 发布时间:
|

目前,随着大家对行车安全、智能驾驶的愈发关注,自动驾驶、高级驾驶辅助系统(ADAS)逐渐成为人们关注的焦点,ADAS 是实现自动驾驶的基础,汽车智能化推动 ADAS 的快速发展。

 

根据美国高速公路安全管理局的定义,目前全球正处于汽车自动化程度的第 2 个阶段。可见,自动驾驶和 ADAS 在未来存在广阔的市场空间。

 

自动驾驶或 ADAS 是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶,因此,高精度、高灵敏度的传感器是无人驾驶汽车中最为核心部件之一。目前,车用传感器有很多种类,包括毫米波雷达、激光雷达、超声波雷达和摄像头等,它们会分置在汽车的各个角落,实现对周围环境高精度感知。

 

其中,毫米波雷达凭借多种优势在 ADAS 和自动驾驶的发展过程中充当起重要角色,成为相关企业竞争、抢占市场的关键。

 

本文就来介绍一下车载毫米波雷达的发展现状、产业格局,以及国内厂商的突围之势。


概述

·毫米波雷达工作原理

毫米波雷达工作频段为 30~300GHz、波长 1~10mm,介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点。与激光雷达相比,目前毫米波雷达技术更加成熟、应用更加广泛、成本更加低廉;相较于可见光摄像头,毫米波雷达的准确性和稳定性更好,价格差距也在不断缩小。尤其是毫米波雷达具有全天候全天时工作特点,无惧雨雪、雾霾、黑夜等恶劣天气,在汽车主动安全领域,毫米波雷达已成为 ADAS 可靠性保障不可或缺的核心部件之一。

 

毫米波雷达检测原理(点击可看大图,下同)

图片来源:前瞻产业研究院、CSDN

 

雷达通过天线向外发射毫米波,接收目标反射信号,经后方处理后快速准确地获取汽车车身周围的物理环境信息(如汽车与其他物体之间的相对距离、相对速度、角度、运动方向等),然后根据所探知的物体信息进行目标追踪和识别分类,进而结合车身动态信息进行数据融合,最终通过中央处理单元(ECU)进行智能处理。经合理决策后,以声、光及触觉等多种方式告知或警告驾驶员,或及时对汽车做出主动干预,从而保证驾驶过程的安全性和舒适性,减少事故发生几率。

 

·历史进展

 

图片来源:盖世汽车研究院

 

发展萌芽期:20 世纪 40 年代,毫米波雷达开始出现;早期研究应用主要集中在汽车领域,但由于体积庞大、价格昂贵等原因,发展一度陷入停滞;80 年代初,毫米波雷达首先应用于军事领域,后期,欧洲也在“欧洲高效安全交通系统计划”指导下开启了对车载毫米波雷达的重新研制;

 

开发期:20 世纪 90 年代,随着微电子技术的发展,使得产品小型化、集成化成了可能,雷达开发进程开始提速。1999 年,奔驰 S 级轿车率先采用 77GHz 毫米波雷达实现自适应巡航功能;

 

实用化到普及期:21 世纪,随着汽车市场需求增长,产业进入蓬勃发展阶段。2013 年,国外 24GHz 雷达进入中国市场,77GHz 对中国采取技术封锁。到 2017 年左右,国产 24GHz 开始实现量产,77GHz 雷达进入样机阶段,未来将会继续加快渗透。

 

·毫米波雷达频段现状

此前,各国对车载毫米波雷达使用的频段较为混乱,牵制了毫米波雷达在汽车领域的发展。2015 年世界通讯大会为车载毫米波雷达制订了专属的频段,频率范围规定在 76~81GHz。目前,各个国家对车载毫米波雷达分配的频段各有不同,但主要集中在 24GHz 和 77GHz 两种,少数国家(如日本)采用 60GHz 频段。

 

图片来源:盖世汽车研究院

 

根据其探测距离范围毫米波雷达可分为:短程毫米波雷达 SRR(60 米以下)、中程毫米波雷达 MRR(100 米左右)、长程毫米波雷达 LRR(200 米以上)。通常 24GHz 雷达检测范围为中短距离,77GHz 为长距离。

 

24GHz 频段

24.0GHz 到 24.25GHz 的频段是窄带(NB),带宽为 250MHz。其中,24GHz 频带还包括一个带宽为 5GHz 的超宽带(UWB)。

 

 

在短程雷达中,24GHz 频段的 NB 和 UWB 雷达已经应用于传统的汽车传感器上。通常 NB 雷达可以完成盲点检测、变道辅助等简单应用,但在大多数情况下包括超短距离的情况下,由于高频分辨率的需求,需要使用 UWB 雷达。

 

77GHz 频段

反观 77GHz 频段,其中 76-77GHz 频段可用于远程车载雷达,并且该频段有等效同性各向辐射功率(EIRP)的优势,可控制前端远程雷达,适用于紧急制动、自适应巡航控制等功能。

 

 

该频段在日本和欧洲可用于交通基础设施中的雷达系统,可以完成车辆计数、交通阻塞、事故检测、车速测量和通过检测车辆激活交通灯等任务。77-81GHz 短程雷达(SRR)频段是新加入的频段。该频段可提供高达 4GHz 的宽扫描带宽,显著提高了距离分辨率(雷达传感器能够分离两个相邻物体的能力)和精度(测量单个目标时的精确度),非常适合需要高范围分辨率(HRR)的应用。

 

77GHz 汽车雷达的主要优点是分配的频段更宽,距离分辨率更高,体积相比 24GHz 雷达小,目标探测能力强,但是 77GHz 雷达的生产加工工艺要求更高,国外企业在此工艺水平大幅领先于国内市场。

 

从 ADAS 到自动驾驶的演进促进了毫米波雷达的需求。就单车装载量看,目前,L2 阶段配置基本是 1 个长距+2 个短距,到 L3 级别自动驾驶系统时,中长距离毫米波雷达至少需要 4-5 个,L4/L5 级别再加上侧向需求,毫米波雷达甚至需要 8 个以上。

 

根据美国 FCC 和欧洲 ESTI 的规划,24GHz 的宽频段(21.65-26.65GHz)将在 2022 年过期,之后 24GHz 能用的仅剩下 24.05-24.25GHz 范围的窄带频谱。24GHz 频段缺乏宽带宽,再加上新兴雷达应用中对更高性能的需求,使得 24GHz 频段对新兴雷达没有吸引力,尤其是在当前对自动停车和全景视图感兴趣的汽车领域。

 

反之,在 77GHz 频段,汽车雷达将能使用 77-81GHz 高达 4GHz 的带宽。同时,2018 年,中国新车评价规程(C-NCAP)将自动紧急制动系统(AEBS)纳入评分体系,从而将带动 77GHz 毫米波雷达在未来的市场需求。可见,随着车用雷达系统对精度要求的提升和规划走向,未来车载毫米波雷达将以 77GHz(76-81GHz)为趋势。

 

·毫米波雷达工艺进程

毫米波雷达技术工艺经历了三段发展历程:1990~2007 年的砷化镓(GaAs)工艺;2007~2017 年的锗硅(SiGe)工艺;2017 至今的 CMOS 工艺。目前,高集成的 CMOS 工艺将迎来增长期。

 

砷化镓(GaAs)工艺

1990 年初用的是 GaAs 工艺,其最大特点是速度快。但在砷化镓的毫米波雷达当中,由于金属层少、芯片集成度低,需要大量芯片搭建毫米波射频前端(7-8 颗 MMIC/3-4 颗 BBIC),导致雷达模块体积和价格不具备吸引力。导致半导体厂家都不愿意用这种工艺制造雷达。

 

锗硅(SiGe)工艺

从 2007 年开始毫米波雷达市场渗透率开始有了质的飞跃,目前 SiGe 制程在 24GHz 和 77GHz 毫米波雷达中有着广泛的使用。

 

SiGe 工艺最早是由 IBM 于 1998 年推出的量产方案,之后便广泛用于无线通信 IC 制程技术之一,也是目前较高端车型中普遍采用的量产 77GHz 毫米波雷达。

 

其主要优势在于噪声低,动态范围大,且制程成熟,既拥有硅工艺的集成度、良率和成本优势,又具备第 3 到第 5 类半导体(如砷化镓(GaAs)和磷化铟(InP))在速度方面的优点。成本相对 GaAs 工艺来讲也有大幅下降。

 

CMOS 工艺

CMOS 制程是 77GHz 雷达的后起之秀。相对于 SiGe 而言,CMOS 整体造价又下降了 40%。其次,CMOS 的集成度非常高,所以 RF 前端芯片占比也下降了。整个雷达模块设计的复杂度和难度的降低,也加速了整个设计开发的时间周期。

 

而在研发生产过程中,CMOS 工艺研发的难点一个是在 CMOS 本身能承受的功率较少,在低功率下要保证距离范围的覆盖需要一些技术手段。另一个就是 CMOS 噪声较大,需要在硬件设计和降噪算法上多下功夫。基于 CMOS 工艺的 77GHz 雷达进入市场时间较短,性能优化空间还非常大,国内厂商还需在 CMOS 上做更多的技术积累,有利于提高未来的市场竞争力。

 

说到 CMOS 工艺,上海加特兰微电子公司值得一提,他们是全球首家量产 CMOS 毫米波雷达收发单芯片的公司,也是亚洲第一家通过车规认证的 77GHz 毫米波雷达芯片公司,并且还是全球首家成功导入前装车辆并量产的 CMOS-77GHz 毫米波雷达芯片的公司。

 

小结

频段上,77GHz 毫米波雷达在距离分辨率和精度等性能上有大幅提升,正逐渐替代 24GHz 成为未来的主流;

 

工艺上,毫米波雷达芯片的重要趋势是 CMOS 工艺成为主流,CMOS 工艺不仅可将 MMIC 做得更小,甚至可以与微控制单元(MCU)和数字信号处理(DSP)集成在一起,做成 SoC,实现更高的集成度,显著地降低系统尺寸、功耗和成本,还能嵌入更多的功能,也将处于快速增长期。

 

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
5G专网是个大西瓜(三):合成之难