汽车电子 > 汽车系统 > 详情

TI解决混合动力汽车/电动汽车中的高压电流感应设计难题

发布时间:2023-04-13 发布时间:
|

  电气化已为汽车动力系统创造了一个新的范例——无论该设计是混合动力汽车(HEV)还是电动汽车(EV),总有新的设计难题要解决。在这篇技术文章中,我想要强调高压电流感应的一些主要挑战,并分享其他资源来帮助和简化您的设计过程。
    高电压、高电流:(>200 A或更常见的1,000 A)高电压(≥400 V)全电动系统旨在降低驱动车辆的牵引系统的电流消耗。这需要隔离解决方案,以便“热”高压侧能够向“冷”侧(连接到低压≤5-V微控制器或其他电路)提供电流测量。由于I2R的功耗,当用分流电阻器测量时,高电流就会出现问题。
  如要在这些情况下使用分流器,意味着你必须选择低于100-?Ω的分流电阻器,但是这些电阻器往往比更为常见的毫欧级电阻器更大、更昂贵。另一种选择是使用磁性解决方案,但这些磁性解决方案与基于分流器的解决方案相比更低,且具有更高的温度偏移。如果克服了这些性能缺陷,则将极大地增加磁性解决方案的成本和复杂性。
  利用这些设计资源了解更多信息:
 双DRV425母线应用的设计注意事项。”
  · 母线运行原理。”
  高电压, 低电流(>400 V 和 <500 A)
  此外,高电压需要一个隔离解决方案。从电流的角度来看,只要低于100 A基本上就是基于分流器的解决方案。在100 A和500 A之间,选择分流器还是磁性解决方案需要权衡成本、性能和解决方案尺寸。白皮书介绍了:
  在车载充电器和DC/DC转换器中比较基于分流器和基于霍尔的电流感应解决方案。”
  48-V导轨上的测量,低电流(<100 A)
  48-V导轨的主要设计挑战是满足您的要求所需的生存性电压,其可能高达120 V。在一些48-V的电机系统中,需要高电流测量来使电机效率达到峰值。这些电机系统可能包含牵引逆变器、电动助力转向系统或带启动发电机。在线测量可以显示的实际电机电流,但由于存在高速脉冲宽度调制(PWM)信号,因此也非常具有挑战性,正如以下所述:
  带增强PWM抑制的低漂移、高、在线电机电流测量。”
  对于非电机48-V系统,如DC/DC转换器或电池管理系统(BMS),实现双向DC电流测量比实现切换性能更为关键,正如以下所述:
 带瞬态保护的高压侧双向电流感应电路。”
  消除低侧感应的高压共模电压要求
  低压侧电流感应降低了一些放大器的要求:输入端不需要经受高压,因为低压侧感应的共模是接地-0 V。
  放大器的共模电压范围必须包括0 V,以便在低侧测量。如果应用是电机低侧相电流测量,则放大器必须具有很高的压摆率,以调整打开和关闭的开关,正如以下所述:
   测量BMS中的多段电流
  高、多段电流测量(从毫安到1kA)是要在单个解决方案中解决的重大挑战。磁性解决方案不能很好地测量低电流,因为它们的偏移等级较高和漂移较明显。由于极低的差动输入电压水平,基于分流器的测量需要非常低的偏移,以便能够测量低于100-μΩ的子分流电阻器上的低电流。
  例如,BMS可能想要测量±1,500 A。对于0-A输出电压和20增益的±2.5-V输出摆幅的双向测量中,输入电压为±125 mV。这导致分流电阻器的值≤ 83 ?Ω。这个分流器在100mA时的电压降只有8.3?V,这意味着你需要一个具有极低偏移的放大器系统来测量这个电平。如果系统的偏移为1 ?V,则此电平误差为~16%。
   电磁阀中的电流感应可实现更平稳的驱动
  许多汽车应用使用比例电磁阀,但在高压电流感应方面,比例电磁阀主要用于自动变速器。比例电磁阀可在换档或运行液压泵时提供平稳的驾驶体验。电磁阀的驱动能力主要取决于两个因素:电磁阀驱动和电磁阀位置感测。
  高的电流测量能够实现对电磁柱塞位置的闭环控制。
  电磁阀应用中的电流传感器遵循分流原理。脉冲宽度调制信号可用过毫欧分流器在电磁阀上流动。此毫欧分流器集成在电流检测放大器的内部或外部,具体取决于电流范围。

关键词:动力汽车

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
美国大学研究人员研发新款气压传感器 寿命更长可监测车辆胎压