×
单片机 > 单片机程序设计 > 详情

UART串口通信浅谈之(三)--字符与数据的转换

发布时间:2020-06-06 发布时间:
|

学串口通信的应用主要是实现单片机和电脑之间的信息互发,可以用电脑控制单片机的一些信息,可以把单片机的一些信息状况发给电脑上的软件。下面就做一个简单的例程,实现单片机串口调试助手发送的数据,在开发板上的数码管上显示出来。

#include

sbit ADDR3 = P1^3;      //LED选择地址线3

sbit ENLED = P1^4;      //LED总使能引脚

unsigned char code LedChar[] = {  //数码管显示字符转换表

    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,

    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E

};

unsigned char LedBuff[6] = {  //数码管

    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

};

unsigned char T0RH = 0;  //T0重载值的高字节

unsigned char T0RL = 0;  //T0重载值的低字节

unsigned char RxdByte = 0;  //串口接收到的字节

void ConfigTimer0(unsigned int ms);

void ConfigUART(unsigned int baud);

void main ()

{

    P0 = 0xFF;  //P0口初始化

    ADDR3 = 1;  //选择数码管

    ENLED = 0;  //LED总使能

    EA = 1;     //开总中断

    ConfigTimer0(1);   //配置T0定时1ms

    ConfigUART(9600);  //配置波特率为9600

 

    while(1)

    {   //将接收字节在数码管上以十六进制形式显示出来

        LedBuff[0] = LedChar[RxdByte & 0x0F];

        LedBuff[1] = LedChar[RxdByte >> 4];

    }

}

void ConfigTimer0(unsigned int ms)  //T0配置函数

{

    unsigned long tmp;

 

    tmp = 11059200 / 12;      //定时器计数频率

    tmp = (tmp * ms) / 1000;  //计算所需的计数值

    tmp = 65536 - tmp;        //计算定时器重载值

    tmp = tmp + 31;           //修正中断响应延时造成的误差

 

    T0RH = (unsigned char)(tmp >> 8);  //定时器重载值拆分为高低字节

    T0RL = (unsigned char)tmp;

    TMOD &= 0xF0;   //清零T0的控制位

    TMOD |= 0x01;   //配置T0为模式1

    TH0 = T0RH;     //加载T0重载值

    TL0 = T0RL;

    ET0 = 1;        //使能T0中断

    TR0 = 1;        //启动T0

}

void ConfigUART(unsigned int baud)  //串口配置函数,baud为波特率

{

    SCON = 0x50;   //配置串口为模式1

    TMOD &= 0x0F;  //清零T1的控制位

    TMOD |= 0x20;  //配置T1为模式2

    TH1 = 256 - (11059200/12/32) / baud;  //计算T1重载值

    TL1 = TH1;     //初值等于重载值

    ET1 = 0;       //禁止T1中断

    ES  = 1;       //使能串口中断

    TR1 = 1;       //启动T1

}

void LedScan()  //LED显示扫描函数

{

    static unsigned char index = 0;

 

    P0 = 0xFF;                 //关闭所有段选位,显示消隐

    P1 = (P1 & 0xF8) | index;  //位选索引值赋值到P1口低3位

    P0 = LedBuff[index];       //相应显示缓冲区的值赋值到P0口

    if (index < 5)             //位选索引0-5循环,因有6个数码管

        index++;

    else

        index = 0;

}

void InterruptTimer0() interrupt 1  //T0中断服务函数

{

    TH0 = T0RH;  //定时器重新加载重载值

    TL0 = T0RL;

    LedScan();   //LED扫描显示

}

void InterruptUART() interrupt 4

{

    if (RI)  //接收到字节

    {

        RI = 0;  //手动清零接收中断标志位

        RxdByte = SBUF;  //接收到的数据保存到接收字节变量中

        SBUF = RxdByte;  //接收到的数据又直接发回,这叫回显-"echo",以提示用户输入的信息是否已正确接收

    }

    if (TI)  //字节发送完毕

    {

        TI = 0;  //手动清零发送中断标志位

    }

}

大家在做这个实验的时候,有个小问题要注意一下。因为STC89C52RC下载程序是使用了UART串口下载,下载完程序后,程序运行起来了,可是下载软件最后还会通过串口发送一些额外的数据,所以程序刚下载进去不是显示00,而可能是其他数据。重启打开一次就好了。

常用的字符就包含了0~9的数字、A~Z/a~z的字母、还有各种标点符号等。那么在单片机系统里面我们怎么来表示它们呢?

ASCII码(American Standard Code for Information Interchange,即美国信息互换标准代码)可以完成这个使命:在单片机中一个字节的数据可以有0~255共256个值,我们取其中的0~127共128个值赋予了它另外一层涵义,即让它们分别来代表一个常用字符,其具体的对应关系如下表。

表1-1 ASCII表

ASCII值

控制字符

ASCII值

字符

ASCII值

字符

ASCII值

字符

000

NUL

032

(space)

064

@

096

001

SOH

033

!

065

A

097

a

002

STX

034

"

066

B

098

b

003

ETX

035

#

067

C

099

c

004

EOT

036

$

068

D

100

d

005

END

037

%

069

E

101

e

006

ACK

038

&

070

F

102

f

007

BEL

039

'

071

G

103

g

008

BS

040

(

072

H

104

h

009

HT

041

)

073

I

105

i

010

LF

042

*

074

J

106

j

011

VT

043

+

075

K

107

k

012

FF

044

076

L

108

l

013

CR

045

-

077

M

109

m

014

SO

046

078

N

110

n

015

SI

047

/

079

O

111

o

016

DLE

048

0

080

P

112

p

017

DC1

049

1

081

Q

113

q

018

DC2

050

2

082

R

114

r

019

DC3

051

3

083

S

115

s

020

DC4

052

4

084

T

116

t

021

NAK

053

5

085

U

117

u

022

SYN

054

6

086

V

118

v

023

ETB

055

7

087

W

119

w

024

CAN

056

8

088

X

120

x

025

EM

057

9

089

Y

121

y

026

SUB

058

:

090

Z

122

z

027

ESC

059

;

091

[

123

{

分享至
发布时间:2020-06-06 发布时间:
热门文章 更多
STM32中断向量表的位置.重定向