×
嵌入式 > 集成电路 > 详情

TI专家为你解答电源设计相关问题(四)

发布时间:2020-05-23 发布时间:
|
电源设计小贴士 7:高效驱动 LED 离线式照明

  用切实可行的螺纹旋入式 LED 来替代白炽灯泡可能还需要数年的时间,而在建筑照明中 LED 的使用正在不断增长,其具有更高的可靠性和节能潜力。同大多数电子产品一样,其需要一款电源来将输入功率转换为 LED 可用的形式。在路灯应用中,一种可行的配置是创建 300V/0.35 安培负载的 80 个串联的 LED。在选择电源拓扑结构时,需要制定隔离和功率因数校正 (PFC) 相关要求。隔离需要大量的安全权衡研究,其中包括提供电击保护需求和复杂化电源设计之间的对比权衡。在这种应用中,LED 上存在高压,一般认为隔离是非必需的,而 PFC 才是必需的,因为在欧洲 25 瓦以上的照明均要求具有 PFC 功能,而这款产品正是针对欧洲市场推出的。

  就这种应用而言,有三种可选电源拓扑:降压拓扑、转移模式反向拓扑和转移模式 (TM) 单端初级电感转换器 (SEPIC) 拓扑。当 LED 电压大约为80 伏特时,降压拓扑可以非常有效地被用于满足谐波电流要求。在这种情况下,更高的负载电压将无法再继续使用降压拓扑。那么,此时较为折中的方法就是使用反向拓扑和 SEPIC 拓扑。SEPIC 具有的优点是,其可钳制功率半导体器件的开关波形,允许使用较低的电压,从而使器件更为高效。在该应用中,可以获得大约 2% 的效率提高。另外,SEPIC 中的振铃更少,从而使 EMI 滤波更容易。图 1 显示了这种电源的原理图。

  

  图 1 转移模式 SEPIC 发挥了简单 LED 驱动器的作用

  该电路使用了一个升压 TM PFC 控制器来控制输入电流波形。该电路以离线为 C6 充电作为开始。一旦开始工作,控制器的电源就由一个 SEPIC 电感上的辅助绕组来提供。一个相对较大的输出电容将 LED 纹波电流限定在 DC 电流的20%。补充说明一下,TM SEPIC中的 AC 电通量和电流非常高,需要漆包绞线和低损耗内层芯板来降低电感损耗。

  图 2 和图 3 显示了与图 1 中原理图相匹配的原型电路的实验结果。与欧洲线路范围相比,其效率非常之高,最高可达 92%。这一高效率是通过限制功率器件上的振铃实现的。另外,正如我们从电流波形中看到的一样,在 96% 效率以上时功率因数非常好。有趣的是,该波形并非纯粹的正弦曲线,而是在上升沿和下降沿呈现出一些斜度,这是电路没有测量输入电流而只对开关电流进行测量的缘故。但是,该波形还是足以通过欧洲谐波电流要求的。

  

  图 2 TM SEPIC 具有良好的效率和高 PFC 效率

  

  图 3 线路电流轻松地通过 EN61000-3-2 Class C 标准

电源设计小贴士 8:通过改变电源频率来降低 EMI 性能

  在测定 EMI 性能时,您是否发现无论您采用何种方法滤波都依然会出现超出规范几 dB 的问题呢?有一种方法或许可以帮助您达到 EMI 性能要求,或简化您的滤波器设计。这种方法涉及了对电源开关频率的调制,以引入边带能量,并改变窄带噪声到宽带的发射特征,从而有效地衰减谐波峰值。需要注意的是,总体 EMI 性能并没有降低,只是被重新分布了。

  利用正弦调制,可控变量的两个变量为调制频率 (fm) 以及您改变电源开关频率 (Δf) 的幅度。调制指数 (Β) 为这两个变量的比:

  

  图 1 显示了通过正弦波改变调制指数产生的影响。当 Β=0 时,没有出现频移,只有一条谱线。当 Β=1 时,频率特征开始延伸,且中心频率分量下降了 20%。当 Β=2 时,该特征将进一步延伸,且最大频率分量为初始状态的 60%。频率调制理论可以用于量化该频谱中能量的大小。Carson 法则表明大部分能量都将被包含在 2 * (Δf + fm) 带宽中。

  

  图 1 调制电源开关频率延伸了 EMI 特征

  图 2 显示了更大的调制指数,并表明降低 12dB 以上的峰值 EMI 性能是有可能的。

  

  图 2 更大的调制指数可以进一步降低峰值 EMI 性能

  选取调制频率和频移是两个很重要的方面。首先,调制频率应该高于 EMI 接收机带宽,这样接收机才不会同时对两个边带进行测量。但是,如果您选取的频率太高,那么电源控制环路可能无法完全控制这种变化,从而带来相同速率下的输出电压变化。另外,这种调制还会引起电源中出现可闻噪声。因此,我们选取的调制频率一般不能高出接收机带宽太多,但要大于可闻噪声范围。很显然,从图 2 我们可以看出,较大地改变工作频率更为可取。然而,这样会影响到电源设计,意识到这一点非常重要。也就是说,为最低工作频率选择磁性元件。此外,输出电容还需要处理更低频率运行带来的更大的纹波电流。

  图 3 对有频率调制和无频率调制的 EMI 性能测量值进行了对比。此时的调制指数为 4,正如我们预料的那样,基频下 EMI 性能大约降低了 8dB。其他方面也很重要。谐波被抹入 (smear into) 同其编号相对应的频带中,即第三谐波延展至基频的三倍。这种情况会在一些较高频率下重复,从而使噪声底限大大高于固定频率的情况。因此,这种方法可能并不适用于低噪声系统。但是,通过增加设计裕度和最小化 EMI 滤波器成本,许多系统都已受益于这种方法。

   


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
收音.电视两用信号发生器电路图