×
嵌入式 > 技术百科 > 详情

测试仪器基础应用知识总结(一)

发布时间:2020-06-13 发布时间:
|

电子工程师在平时进行电子设计中离不开测试测量所用的仪器仪表,而如何准确用好这些测试仪表,使电子工程师提高设计效率,缩短产品设计周期,则成为合格电子工程师必备的硬功夫。为给工程师朋友提供较为全面的测量仪表相关应用知识,或学习,或参考,或温故而知新,电子发烧友会陆续整合推出《测试仪器基础应用知识总结》系列章节,敬请留意。


  一、怎样去调试一个新设计的电路板

  对于一个新设计的电路板,调试起来往往会遇到一些困难,特别是当板比较大、元件比较多时,往往无从下手。但如果掌握好一套合理的调试方法,调试起来将会事半功倍。对于刚拿回来的新PCB板,我们首先要大概观察一下,板上是否存在问题,例如是否有明显的裂痕,有无短路、开路等现象。如果有必要的话,可以检查一下电源跟地线之间的电阻是否足够大。

  然后就是安装元件了。相互独立的模块,如果您没有把握保证它们工作正常时,最好不要全部都装上,而是一部分一部分的装上(对于比较小的电路,可以一次全部装上),这样容易确定故障范围,免得到时遇到问题时,无从下手。一般来说,可以把电源部分先装好,然后就上电检测电源输出电压是否正常。如果在上电时您没有太大的把握(即使有很大的把握,也建议您加上一个保险丝,以防万一),可考虑使用带限流功能的可调稳压电源。先预设好过流保护电流,然后将稳压电电源的电压值慢慢往上调,并监测输入电流、输入电压以及输出电压。如果往上调的过程中,没有出现过流保护等问题,且输出电压也达到了正常,则说明电源部分OK。反之,则要断开电源,寻找故障点,并重复上述步骤,直到电源正常为止。

  接下来逐渐安装其它模块,每安装好一个模块,就上电测试一下,上电时也是按照上面的步骤,以避免因为设计错误或/和安装错误而导致过流而烧坏元件。

  寻找故障的办法一般有下面几种:

  ①测量电压法。首先要确认的是各芯片电源引脚的电压是否正常,其次检查各种参考电压是否正常,另外还有各点的工作电压是否正常等。例如,一般的硅三极管导通时,BE结电压在0.7V左右,而CE结电压则在0.3V左右或者更小。如果一个三极管的BE结电压大于0.7V(特殊三极管除外,例如达林顿管等),可能就是BE结就开路。

  ②信号注入法。将信号源加至输入端,然后依次往后测量各点的波形,看是否正常,以找到故障点。有时我们也会用更简单的办法,例如用手握一个镊子,去碰触各级的输入端,看输出端是否有反应,这在音频、视频等放大电路中常使用(但要注意,热底板的电路或者电压高的电路,不能使用此法,否则可能会导致触电)。如果碰前一级没有反应,而碰后一级有反应,则说明问题出在前一级,应重点检查。

  ③当然,还有很多其它的寻找故障点的方法,例如看、听、闻、摸等。“看”就是看元件有无明显的机械损坏,例如破裂、烧黑、变形等;“听”就是听工作声音是否正常,例如一些不该响的东西在响,该响的地方不响或者声音不正常等;“闻”就是检查是否有异味,例如烧焦的味道、电容电解液的味道等,对于一个有经验的电子维修人员来说,对这些气味是很敏感的;“摸”就是用手去试探器件的温度是否正常,例如太热,或者太凉。一些功率器件,工作起来时会发热,如果摸上去是凉的,则基本上可以判断它没有工作起来。但如果不该热的地方热了或者该热的地方太热了,那也是不行的。一般的功率三极管、稳压芯片等,工作在70度以下是完全没问题的。70度大概是怎样的一个概念呢?如果你将手压上去,可以坚持三秒钟以上,就说明温度大概在70度以下(注意要先试探性的去摸,千万别把手烫伤了)。

  二、选选择电子测试仪器的几个重要指标

  以数字示波器为例,很多用户可能都知道示波器的一些传统的指标,比如带宽,采样率,存储深度等等,甚至出现在选型的时候根据指标”比数大小”,以为数大的就比数小的好 ---其实不然!要想真正了解数字示波器,就必须深入洞察隐藏在标称的指标背后的产品的真正性能和质量,就像有不少消费者在选购数码相机的时候往往很在意像素数,其实除了这个”数”之外,还有很多(更)重要的指标甚至材质需要考虑的。

  在可扩展性、支持的通信标准数量、测试精度、动态范围和解调带宽等方面,这些参数都很重要。未来的基站可能向双模和多模演进,很多手机都已经具备多模功能,如GSM和WCDMA双模手机,如果仪器支持的通信标准多,那么需采购仪器的品种和数量就大大减少。另外,随着3G、LTE等技术的出现,对仪表提出了更高的要求,高测试精度、大动态范围和大解调带宽的仪器非常受欢迎。移动通信技术发展很快,目前中国还没有大量商用3G,而LTE,作为WCDMA和TD-SCDMA的后续技术,已经快推出原型机了。网络运营商可能会加快新的技术的引入,这对基站和终端生产厂商确实是挑战:他们现在购买的测试仪器必须具备很好的扩展性,能方便地升级到未来技术,这样才能更大限度保护厂商的投资。

  另外,示波器的带宽、采样率等都是示波器的常见参数。示波器带宽由于制造与研发技术的发展,使示波器带宽能够得到修正和补偿。但这些修正和补偿未尝都是好事一桩,有些客户并不希望这些技术带入到测试中去,他们更需要原始的测试数据,比如雷达实验。目前泰克在1G~2G全系列示波器家族中,提供纯硬件的示波器,示波器带宽是最真实的。泰克的前端技术可以保证将示波器的硬件前置放大器做的足够好。采样率是ADC的指标。捕获率参数反映的是一个内存管理的(是否能够在保存的信号中找到所需的信号)的概念。泰克采用的是分段式管理,在信号跳变时保存信息。包括Inspector等方法。
三、电池电量的两种测试方法

  检测普通锌锰干电池的电量是否充足,通常有两种方法。第一种方法是通过测量电池瞬时短路电流来估算电池的内阻,进而判断电池电量是否充足;第二种方法是用电流表串联一只阻值适当的电阻,通过测量电池的放电电流计算出电池内阻,从而判断电池电量是否充足。

  第一种方法的最大优点是简便,用万用表的大电流档就可直接判断出干电池的电量,缺点是测试电流很大,远远超过干电池允许放电电流的极限值,在一定程度上影响干电池使用寿命。第二种方法的优点是测试电流小,安全性好,一般不会对干电池的使用寿命产生不良影响,缺点是较为麻烦。

  笔者用MF47型万用表对一节新2号干电池和一节旧2号干电池分别用上述两种方法进行测试对比。假设ro是干电池内阻,RO是电流表内阻,用第二种测试方法时,RF是附加的串联电阻,阻值3Ω,功率2W。

  实测结果如下。新2号电池E=1.58V(用2.5V直流电压档测量),电压表内阻为50kΩ,远大于ro,故可近似认为1.58V是电池的电动势,或称开路电压。用第一种方法时,万用表置5A直流电流档,电表内阻RO=0.06Ω,测得电流为3.3A。所以ro+RO=1.58V÷3.3A≈0.48Ω,ro=0.48-0.06=0.42Ω。用第二种方法时,测得电流为0.395A,RF+ro+RO=1.58V÷0.395A=4Ω,电流500mA档内阻为0.6Ω,所以ro=4-3-0.6=0.4Ω。

  旧2号电池用第一种方法测量时,先测得开路电压E=1.2V,电表内阻RO=6Ω,读数为6.5mA,万用表置50mA直流电流档,ro+RO=1.2V÷0.0065A≈184.6Ω,ro=184.6-6=178.6Ω。用第二种方法,测得电流为6.3mA,ro+RO+RF=1.2V÷0.0063A=190.5Ω,ro=190.5-6-3=181.5Ω。

  显然两种测试方法的结果基本一致。最终计算结果的微小差别是由于读数误差、电阻RF的误差以及接触电阻等多方面因素造成的,这种微小误差不致影响对电池电量的判断。 如果被测电池的容量小、电压高(例如15V、9V叠层电池),则应将RF的阻值适应增大。

  四、测试仪器选择:如何选择合适的示波器带宽

  带宽是大多数工程师在选择一款示波器时首先考虑的参数。本文将为您提供一些有用的窍门,教您如何为您的数字和模拟应用选择合适的示波器带宽。但首先,我们先看看示波器带宽的定义。

  示波器带宽的定义

  所有示波器都表现出如图1所示的在较高频率处滚降的低通频率响应。大多数带宽参数在1 GHz及以下的示波器通常表现为高斯响应,即具备约从-3 dB频率的三分之一处开始缓慢滚降的特性。而那些带宽规格超过1 GHz的示波器通常则具备最大平坦频率响应,如图2所示。这种频响通常表现为带内响应较平缓,而在约-3 dB频率处滚降较陡。

  

  图1:低通频率响应

  

  图2:最大平坦频率响应

  示波器的这两种频率响应各有各的优缺点。具备最大平坦频响的示波器比具备高斯频响的示波器对带内信号的衰减较小,也就是说前者对带内信号的测量更精确。但具备高斯频响的示波器比具备最大平坦频响的示波器对代外信号的衰减小,也就是说在同样的带宽规格下,具备高斯频响的示波器通常具备更快的上升时间。然而,有时对带外信号的衰减大有助于消除那些根据奈奎斯特标准(fMAX 《 fS)可能造成混迭的高频成分。关于奈奎斯特采样理论更深入的探讨,请参看安捷伦应用笔记1587(Agilent Application Note 1587) 。

  不论您手头的示波器具备高斯频响、最大平坦频响还是介于二者之间,我们都将输入信号通过示波器后衰减3 dB时的最低频率视为该示波器的带宽。示波器的带宽和频响可以利用正弦波信号发生器扫频测量得到。信号在示波器-3dB频率处的衰减转换后可表示为约-30%的幅度误差。因此,我们不能奢望对那些主要的频率成分接近示波器带宽的信号进行精确测量。

  与示波器带宽规格紧密相关的是其上升时间参数。具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW。具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。但我们必须记住的是,示波器的上升时间并非示波器能精确测量的最快的边缘速度,而是当输入信号具备理论上无限快的上升时间(0 ps)时,示波器能够得到的最快边沿速度。尽管实际上这种理论参数不可能测得到,因为脉冲发生器不可能输出边沿无限快的脉冲,但我们可以通过输入一个边沿速度为示波器上升时间规格的3到5倍的脉冲来测量示波器的上升时间。
数字应用需要的示波器带宽

  经验告诉我们,示波器的带宽至少应比被测系统最快的数字时钟速率高5倍。如果我们选择的示波器满足这一标准,那么该示波器就能以最小的信号衰减捕捉到被测信号的5次谐波。信号的5次谐波在确定数字信号的整体形状方面非常重要。但如果需要对高速边沿进行精确测量,那么这个简单的公式并未考虑到快速上升和下降沿中包含的实际高频成分。

  公式:fBW ≥ 5 x fclk

  确定示波器带宽的一个更准确的方法是根据数字信号中存在的最高频率,而不是最大时钟速率。数字信号的最高频率要看设计中最快的边沿速度是多少。因此,我们首先要确定设计中最快的信号的上升和下降时间。这一信息通常可从设计中所用器件的公开说明书中获取。

  第一步:确定最快的边沿速度

  然后就可以利用一个简单的公式计算信号的最大“实际”频率成分。Howard W. Johnson博士就此题目写过一本书《高速数字设计》。在书中,他将这一频率成分称为“拐点 ”频率(fknee)。所有快速边沿的频谱中都包含无限多的频率成分,但其中有一个拐点(或称“knee”),高于该频率的频率成分对于确定信号的形状就无关紧要了。

  第二步:计算fknee

  fknee = 0.5/RT (10% - 90%)

  fknee = 0.4/RT (20% - 80%)

  对于上升时间特性按照10% 到90%阀值定义的信号而言,拐点频率fknee等于0.5除以信号的上升时间。对上升时间特性按照20% 到80%阀值定义的信号而言(如今的器件规范中通常采用这种定义方式),fknee等于0.4除以信号的上升时间。但注意不要把此处的信号上升时间与示波器的上升时间规格混淆了,我们这里所说的是实际的信号边沿速度。

  第三步就是根据测量上升时间和下降时间所需的精确程度来确定测量该信号所需的示波器带宽。表1给出了对于具备高斯频响或最大平坦频响的示波器而言,在各种精度要求下需要的示波器带宽与fknee的关系。但要记住的是,大多数带宽规格在1 GHz及以下的示波器通常都是高斯频响型的,而带宽超过1 GHz的通常则为最大平坦频响型的。

  表1:根据需要的精度和示波器频率响应的类型计算示波器所需带宽的系数

  

  第三步:计算示波器带宽

  下面我们通过一个简单的例子进行讲解:

  对于在测量500ps上升时间(10-90%)时具有正确的高斯频率响应的示波器,确定其所需的最小带宽

  如果信号的上升/下降时间约为500ps(按10%到90%的标准定义),那么该信号的最大实际频率成分((fknee)就约为1 GHz。

  fknee = (0.5/500ps) = 1 GHz

  如果在进行上升时间和下降时间参数测量时允许20%的定时误差,那么带宽为1 GHz的示波器就能满足该数字测量应用的要求。但如果要求定时精度在3%范围内,那么采用带宽为2GHz的示波器更好。

  20%定时精度:

  示波器带宽=1.0x1GHz=1.0GHz

  3%定时精度:

  示波器带宽=1.9x1GHz=1.9GHz

  下面我们将用几个带宽不同的示波器对与该例中的信号具备类似特性的一个数字时钟信号进行测量。

  不同带宽示波器对同一数字时钟信号的测量比较

  图3给出了利用Agilent 公司带宽为100MHz的示波器 MSO6014A测量一个边沿速度为500ps(从10%到90%)的100MHz数字时钟信号得到的波形结果。

  

  图3

  从图中可以看出,该示波器主要只通过了该时钟信号的100MHz基本频率成分,因此,时钟信号显示出来大约是正弦波的形状。带宽为100MHz的示波器对许多时钟速率在10MHz 到 20MHz 范围的基于MCU的8bit设计而言可能非常合适,但对于这里测量的100MHz的时钟信号就明显不够了。 图4给出了利用Agilent公司500MHz带宽的示波器MSO6054A测量同一信号的结果。

  

  图4

  从图中可以看出,该示波器最高能捕捉到信号的5次谐波,这恰好满足了我们在前面给出的第一个经验建议。但在我们测量上升时间时发现,用这台示波器测量得到的上升时间约为750ps。在这种情况下,示波器对信号上升时间的测量就不是非常准确,它得到的测量结果实际上很接近它自己的上升时间(700ps),而不是输入信号的上升时间(接近500ps)。这说明,如果时序测量比较重要,那么我们就需要用更高带宽的示波器才能满足这一数字测量应用的要求。

  换用Agilent1-GHz带宽的示波器MSO6104A之后,我们得到的信号图像(见图5)就更准确了。

  

  图5

  在示波器中选择上升时间测量后,我们得到的测量结果约为550ps。这一测量结果的精度约为10%,已经非常让人满意,尤其在需要考虑示波器资金投入的情况下。但有时,即便是1GHz带宽示波器得到的这种测量结果也可能被认为精度不够。如果我们要求对这个边沿速度在500ps的信号达到3%的边沿速度测量精度,那么我们就需要2 GHz或更高带宽的示波器,这一点我们在前面的例子中已经提到。

  换用2GHz带宽的示波器之后,我们现在看到的(见图6)就是比较精确的时钟信号,上升时间测量结果约为495ps。

  

  图6

  安捷伦Infiniium系列高带宽示波器有一个优点,那就是带宽可以升级。如果2 GHz带宽对今天的应用已经足够,那么您开始可以只购买入门级的2-GHz示波器,以后当您需要更高的带宽时,再将其逐步升级到13 GHz。
模拟应用需要的示波器带宽

  多年之前,大多数示波器厂商就建议用户在选择示波器时,带宽至少应比最大信号频率高3倍。尽管这一“3X”准则并不适用于以时钟速率为基础的数字应用,但它却仍然适用于已调RF信号测量等模拟应用。为了便于读者理解这一三倍乘子的来历,我们来看一个1GHz带宽示波器的真正频率响应。

  图7所示为对Agilent1-GHz带宽示波器MSO6104A的扫频响应测试(扫频范围20 MHz到 2 GHz)。

  

  图7

  从图中可以看出,恰好在1 GHz处,输入信号衰减约为1.7 dB,这还远未超出定义示波器带宽的-3 dB限。然而,要想精确测量模拟信号,我们只能利用示波器带宽中衰减最小的相对平坦的那部分频带。对该示波器而言,在其1 GHz带宽的大约三分之一处,输入信号基本没有衰减(衰减为0dB)。但并非所有示波器都具备这样的频响。

  图8所示的是对另一厂商的1.5-GHz带宽示波器进行扫频响应测试的结果。

  

  图8

  这正是一个远非平坦频响的例子。该示波器的频响既不是高斯频响也不是最大平坦频响,反而更像“最大起伏”频响,而且尖峰现象很严重,这会导致波形严重失真,不论测量的是模拟信号还是数字信号。不幸的是,示波器的带宽规范(即输入信号衰减为3dB的频率)中对在其他频率上的信号衰减或放大没有任何规定。在这台示波器上,即便是在示波器带宽的五分之一处,信号也有大约1dB(10%)的衰减。因此,在这种情况下再根据3X准则选择示波器就很不明智了。所以,在挑选示波器时,最好是选择著名厂商的产品,而且要密切注意示波器频响的相对平坦度。 本文小结

  总的来说,对数字应用而言,示波器带宽至少应比被测设计的最快时钟速率快5倍。但在需要精确测量信号的边沿速度时,则要根据信号的最大实际频率成分来决定示波器带宽。

  对模拟应用而言,示波器带宽至少应比被测设计中的模拟信号最高频率高3倍,但这一经验准则只适用于那些在低频段上频响相对平坦的示波器。

  而且我们选择示波器时也不能只顾眼前,不管将来。只要预算允许,在今天购买稍优于应用最低要求的示波器可能会在将来为您节约不少投资。




『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
三星研发基于risc-v架构的5G毫米波射频芯片