×
嵌入式 > 嵌入式开发 > 详情

51单片机结合NRF24L01对舵机进行无线控制

发布时间:2020-09-03 发布时间:
|
发送端程序如下:
#include #include #include typedef unsigned char uchar;typedef unsigned char  uint;sbit 	MISO=P1^5;sbit 	MOSI=P1^4;sbit	SCK=P1^3;sbit	CE=P1^1;sbit	CSN=P1^2;sbit	IRQ=P3^3;sbit	KEY1=P3^4;sbit	KEY2=P3^5;sbit   KEY3=P3^6;sbit   KEY4=P3^7;#define TX_ADR_WIDTH    5   	#define RX_ADR_WIDTH    5   	#define TX_PLOAD_WIDTH  20  	#define RX_PLOAD_WIDTH  20  	uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//本地地址uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//接收地址#define READ_REG        0x00  // 读寄存器指令#define WRITE_REG       0x20  // 写寄存器指令#define RD_RX_PLOAD     0x61  // 读取接收数据指令#define WR_TX_PLOAD     0xA0  // 写待发数据指令#define FLUSH_TX        0xE1  // 冲洗发送 FIFO指令#define FLUSH_RX        0xE2  // 冲洗接收 FIFO指令#define REUSE_TX_PL     0xE3  // 定义重复装载数据指令#define NOP             0xFF  // 保留#define CONFIG          0x00  // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA           0x01  // 自动应答功能设置#define EN_RXADDR       0x02  // 可用信道设置#define SETUP_AW        0x03  // 收发地址宽度设置#define SETUP_RETR      0x04  // 自动重发功能设置#define RF_CH           0x05  // 工作频率设置#define RF_SETUP        0x06  // 发射速率、功耗功能设置#define STATUS          0x07  // 状态寄存器#define OBSERVE_TX      0x08  // 发送监测功能#define CD              0x09  // 地址检测           #define RX_ADDR_P0      0x0A  // 频道0接收数据地址#define RX_ADDR_P1      0x0B  // 频道1接收数据地址#define RX_ADDR_P2      0x0C  // 频道2接收数据地址#define RX_ADDR_P3      0x0D  // 频道3接收数据地址#define RX_ADDR_P4      0x0E  // 频道4接收数据地址#define RX_ADDR_P5      0x0F  // 频道5接收数据地址#define TX_ADDR         0x10  // 发送地址寄存器#define RX_PW_P0        0x11  // 接收频道0接收数据长度#define RX_PW_P1        0x12  // 接收频道0接收数据长度#define RX_PW_P2        0x13  // 接收频道0接收数据长度#define RX_PW_P3        0x14  // 接收频道0接收数据长度#define RX_PW_P4        0x15  // 接收频道0接收数据长度#define RX_PW_P5        0x16  // 接收频道0接收数据长度#define FIFO_STATUS     0x17  // FIFO栈入栈出状态寄存器设置void Delay(unsigned int s);void inerDelay_us(unsigned char n);void init_NRF24L01(void);uint SPI_RW(uint uchar);uchar SPI_Read(uchar reg);void SetRX_Mode(void);uint SPI_RW_Reg(uchar reg, uchar value);uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);void nRF24L01_TxPacket(unsigned char * tx_buf);void Delay(unsigned int s){unsigned int i;for(i=0; i0;n--)_nop_();}void init_NRF24L01(void){inerDelay_us(100);CE=0;    CSN=1;   SCK=0;   SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH);SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);SPI_RW_Reg(WRITE_REG + RF_CH, 0);SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH);SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);   		}uint SPI_RW(uint uchar){uint bit_ctr;for(bit_ctr=0;bit_ctr<8;bit_ctr++) {MOSI = (uchar & 0x80);         uchar = (uchar << 1);          SCK = 1;                      uchar |= MISO;       		  SCK = 0;            		  }return(uchar);           		  }uchar SPI_Read(uchar reg){uchar reg_val;CSN = 0;                SPI_RW(reg);            reg_val = SPI_RW(0);    CSN = 1;                return(reg_val);        }uint SPI_RW_Reg(uchar reg, uchar value){uint status;CSN = 0;                   status = SPI_RW(reg);      SPI_RW(value);             CSN = 1;                   return(status);           }uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars){uint status,uchar_ctr;CSN = 0;                    		status = SPI_RW(reg);       		for(uchar_ctr=0;uchar_ctr
接收端程序如下:

#include #include #include typedef unsigned char uchar;typedef unsigned char uint;sbit 	MISO=P1^5;sbit 	MOSI=P1^4;sbit	SCK=P1^3;sbit	CE=P1^1;sbit	CSN=P1^2;sbit	IRQ=P3^3;sbit  KEY1=P3^4;   sbit  KEY2=P3^5;   sbit  KEY3=P3^6;   sbit  KEY4=P3^7;   #define TX_ADR_WIDTH    5   	#define RX_ADR_WIDTH    5   	#define TX_PLOAD_WIDTH  20  	#define RX_PLOAD_WIDTH  20  	uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//本地地址uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};	//接收地址#define READ_REG        0x00  // 读寄存器指令#define WRITE_REG       0x20  // 写寄存器指令#define RD_RX_PLOAD     0x61  // 读取接收数据指令#define WR_TX_PLOAD     0xA0  // 写待发数据指令#define FLUSH_TX        0xE1  // 冲洗发送 FIFO指令#define FLUSH_RX        0xE2  // 冲洗接收 FIFO指令#define REUSE_TX_PL     0xE3  // 定义重复装载数据指令#define NOP             0xFF  // 保留#define CONFIG          0x00  // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA           0x01  // 自动应答功能设置#define EN_RXADDR       0x02  // 可用信道设置#define SETUP_AW        0x03  // 收发地址宽度设置#define SETUP_RETR      0x04  // 自动重发功能设置#define RF_CH           0x05  // 工作频率设置#define RF_SETUP        0x06  // 发射速率、功耗功能设置#define STATUS          0x07  // 状态寄存器#define OBSERVE_TX      0x08  // 发送监测功能#define CD              0x09  // 地址检测           #define RX_ADDR_P0      0x0A  // 频道0接收数据地址#define RX_ADDR_P1      0x0B  // 频道1接收数据地址#define RX_ADDR_P2      0x0C  // 频道2接收数据地址#define RX_ADDR_P3      0x0D  // 频道3接收数据地址#define RX_ADDR_P4      0x0E  // 频道4接收数据地址#define RX_ADDR_P5      0x0F  // 频道5接收数据地址#define TX_ADDR         0x10  // 发送地址寄存器#define RX_PW_P0        0x11  // 接收频道0接收数据长度#define RX_PW_P1        0x12  // 接收频道0接收数据长度#define RX_PW_P2        0x13  // 接收频道0接收数据长度#define RX_PW_P3        0x14  // 接收频道0接收数据长度#define RX_PW_P4        0x15  // 接收频道0接收数据长度#define RX_PW_P5        0x16  // 接收频道0接收数据长度#define FIFO_STATUS     0x17  // FIFO栈入栈出状态寄存器设置void Delay(unsigned int s);void inerDelay_us(unsigned char n);void init_NRF24L01(void);uint SPI_RW(uint uchar);uchar SPI_Read(uchar reg);void SetRX_Mode(void);uint SPI_RW_Reg(uchar reg, uchar value);uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);void nRF24L01_TxPacket(unsigned char * tx_buf);uchar flag_0;uchar flag_1;unsigned int num;void Delay(unsigned int s){unsigned int i;for(i=0; i0;n--)_nop_();}void init_NRF24L01(void){inerDelay_us(100);CE=0;    CSN=1;   SCK=0;   SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);	SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH);	SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);      	SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);  SPI_RW_Reg(WRITE_REG + RF_CH, 0);       SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);   		}uint SPI_RW(uint uchar){uint bit_ctr;for(bit_ctr=0;bit_ctr<8;bit_ctr++) {MOSI = (uchar & 0x80);         uchar = (uchar << 1);           SCK = 1;                      uchar |= MISO;       		  SCK = 0;            		  }return(uchar);           		  }uchar SPI_Read(uchar reg){uchar reg_val;CSN = 0;                SPI_RW(reg);            reg_val = SPI_RW(0);    CSN = 1;                return(reg_val);        }uint SPI_RW_Reg(uchar reg, uchar value){uint status;CSN = 0;                  status = SPI_RW(reg);     SPI_RW(value);            CSN = 1;                  return(status);           }uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars){uint status,uchar_ctr;CSN = 0;                    		status = SPI_RW(reg);       		for(uchar_ctr=0;uchar_ctrinterrupt 1 {       if(flag_0==1)	PWM_Value[0]+=1;if(flag_0==2)	PWM_Value[0]-=1;if(flag_1==1)	PWM_Value[1]+=1;if(flag_1==2)	PWM_Value[1]-=1;if(PWM_Value[0]>=2500)PWM_Value[0]=2500;if(PWM_Value[1]>=2500)PWM_Value[1]=2500;if(PWM_Value[0]<=500)PWM_Value[0]=500;if(PWM_Value[1]<=500)PWM_Value[1]=500;switch(order){case 1:PWM_OUT0=1;TH0=(65536-PWM_Value[0])>>8;TL0=(uchar)(65536-PWM_Value[0]);break;                                case 2:PWM_OUT0=0;TH0=(65536-(5000-PWM_Value[0]))>>8;TL0=(uchar)(65536-(5000-PWM_Value[0]));break;                                					case 3:PWM_OUT1=1;TH0=(65536-PWM_Value[1])>>8;TL0=(uchar)(65536-PWM_Value[1]);break;case 4:PWM_OUT1=0;TH0=(65536-(5000-PWM_Value[1]))>>8;TL0=(uchar)(65536-(5000-PWM_Value[1]));break;case 5:TH0=60536>>8;TL0=(uchar)60536;break;case 6:TH0=60536>>8;TL0=(uchar)60536;order=0;break;default: order=0;break;}order++;}


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
单片机汇编语言 如何实现点亮熄灭二极管