×
嵌入式 > 嵌入式开发 > 详情

前车门控制器解决方案

发布时间:2020-07-10 发布时间:
|
本文介绍了一种“总体分布、局部集中”式的轿车车门控制器设计方案,即以安森美半导体系统基础芯片NCV7462和功率驱动芯片NCV7707为核心设计前车门控制器的硬件电路,在满足前车门功能的同时对外部负载实现全面的保护。

随着汽车电子技术的不断发展,人们对汽车的操控性及舒适性需求不断提升高。汽车车身中的电子设备越来越多,尤其是前车门模块需要支持更多的功能,如电动后视镜折叠与调平、除霜器、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。电子车门系统广义上分为两种架构:一种是集总式控制,通过一个中心模块控制和驱动所有车门中的每个负载,这样可降低整体成本,但增加了控制器的复杂性,而且控制过于集中、尺寸偏大,不利于安装、布线和散热。另一种采用分布式控制,每个车门内的负载由各自的ECU模块单独控制,也可由驾驶员侧ECU通过CAN/LIN总线控制。在这种方案中,通常两个前门ECU连接到CAN总线网络,分别与后面两个车门的ECU通过CAN或LIN总线通信。分布式方案结构简单,成本偏高,不过应用越来越广泛。

在分布式方案中,如门锁、后视镜、车窗升降器和辅助照明等主要的车门功能由分布在各个车门上的模块控制。而前车门模块除了自身门锁、车窗升降器功能外,还有外部后视镜功能的控制。在新一代汽车外部后视镜中,内置功能的数量大幅增加:转向灯/闪光灯、车门外部灯、除霜器、后视镜折叠与调节,甚至电动防眩目。系统设计师面临的挑战是如何在更小的体积实现更多的功能,以及成本要求。

前车门控制模块的整体设计

图1是功能较全面的车门控制器原理框图,主要由电源电路、电动车窗驱动电路、后视镜驱动电路、中央门锁驱动电路、车灯驱动电路、CAN/LIN总线接口电路、霍尔传感器输入电路及按键接口电路等部分组成。其中微控制器uC用于控制所有功率器件的开关动作,同时对系统状态进行定时监控,接收合适的故障信号,并通过车载网络CAN/LIN总线实现与中央车身控制器及其他车门控制器的故障信息和按键控制信息的交换,从而及时在用户界面上显示故障内容并对车门进行实时控制,确保了行车安全。

安森美半导体公司针对该模块专门开发了功率级驱动芯片NCV7462与NCV7707。 NCV7462集成了2路线性稳压器、CAN收发器、LIN收发器、看门狗(WD)电路、运放及高边、低边驱动。NCV7707专用于控制前车门负载,包括后视镜位置、加热和折叠,除此之外,还有两组半桥用于控制锁电机,以及4组高边输出驱动灯泡。

本系统的硬件结构框图如图2所示,功率级芯片NCV7462与NCV7707直接由电池供电,外部电路需要有反极性保护电路。NCV7462内置的LDO VR1向微处理器uC供电。微处理器uC通过SPI通信控制NCV7462与NCV7707,同时读取其状态信息。这些器件已提供了完善的故障检测及保护功能,因而避免了采用过多的分立元件,大大减小了模块的体积,并提高了模块的EMC(电磁兼容)特性。

前车门控制系统的电路设计

1.反极性保护电路

为了保证驱动电流,NCV7462与NCV7707内部功率驱动器均通过VS连接至汽车12V电源线,因此要求配备外部反极性保护。NCV7462外部负载功率较小,通过串接二极管即可满足防反接要求,如图2中并联两只NRVBRA140T3G。二极管NRVBRA140T3G,,功耗0.55V,适用于续流和反极性保护。

而NCV7707负载功率大,若使用二极管,导通压降和导通电流较大,功耗大大增加,需采用导通阻抗更低的MOSFET。NCV7707内部配有一个电荷泵,通过引脚CHP控制MOSFET通断。

2.电源电路

一般而言,BCM要求的输入电压在-0.5V至32V之间,输出电压为5V。随着汽车内的用电设备的增多,如果电池直接供电的设备静态电流不够低,而汽车连续停泊较长时间,车内蓄电池可能因为过度放电而使汽车无法重新启动,故BCM设计需要考虑静态电流。此外,汽车应用中可能会常常面对高温环境,所以要求电源提供过温保护。





『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
MSP430单片机硬件知识-复位