工业控制 > 工业自动化 > 详情

传感器的信号调节技术

发布时间:2024-11-21 发布时间:
|

提示

 

· 通常,斩波放大器更适合用于直流或低频应用,而自动稳零放大器则适用于更大带宽的应用。

· 两种很常见的结构分别用两只和三只运放构成仪表放大器。

· 能量采集为远方的微处理器或发射机供电,而不需要局部电源。

· 完整解决方案需要处理传感器驱动与输出需求、采样速率、信号路径校准、性能、传感器诊断、功耗需求等问题。

· 无线传感器网络正在改变信息收集的方式,增加物理世界数据的数量与可获得性。

很多传感器都是以低频产生低输出电压,需要一个高增益和有精确性能(接近于dc)的信号调节电路。我们评估了现代模拟电路所采用最新传感器信号调节状况。

现代传感器能检测许多模拟属性,如温度、力、压力、湿度、流动、功率等,并将其转换成一定的电压、电流、电荷输出。这些输出或为阻性模拟信号, 或为纯数字信号, 其大小与对应的环境激励成比例。有些传感器可自行工作; 还有一些则需要提供电源, 通常是电压源或电流源形式。很多时候, 需要对信号做单独的调节或合并, 才能提供有用的电子输出信号。本文中,我们来看一些现代模拟电路中用于传感器信号调节的最新技术。随着对高精密运放需求的不断增长,自校准架构也日益普及,这种架构可连续地校准偏移误差。Microchip公司首席产品营销工程师Kevin Tretter发现,很多领先放大器制造商都用“零漂移”来表示任何的连续自校准架构,无论是自动稳零结构,还是斩波稳零结构。通常,斩波放大器更适合用于dc或低频应用,而自动稳零放大器则适用于更大带宽的应用。

Tretter指出,用于零漂信号调节的自动稳零架构包括一个主放大器和次放大器,主放大器永远连到输入端,而次放大器则不断修正它们自己的偏移,并将偏移修正值应用于主放大器。Microchip公司已在MCP6V01上实现了这种类型的架构,其主放大器偏移误差的修正速度为1万次/s,从而获得了Microchip称之为极低的偏移和失调漂移。

斩波稳零架构也使用一只永远与输入端相连的大带宽主放大器, 另外有一个“ 辅助” 放大器, 它使用开关来斩断输入信号, 为主放大器提供偏移校正。例如,Microchip的MCP6V11小功率放大器通过斩波动作最大限度地减少了偏移以及偏移相关的误差。

虽然内部工作方式不同,但自动稳零和斩波稳零放大器都有相同的目标: 尽量减小偏移以及偏移相关的误差。结果不仅获得了低的初始偏移, 而且在各个时间和温度下也有低的失调漂移、极好的共模抑制与电源抑制,并消除了1/f ( 频率相关)噪声。

斩波架构

Analog Devices公司应用工程经理Reza Moghimi指出,很多传感器都是以低频产生低输出电压,需要一个高增益和有精确性能(接近于dc)的信号调节电路。这些传感器的应用包括精密电子秤、测压元件与桥式换能器、热电偶/温差电堆传感器的接口,以及精密医疗仪器。

用于这些传感器信号调节的是非精密放大器, 它们的偏移电压、失调漂移电压, 以及1 / f 噪声都会造成误差, 需要软件或硬件的校正。Moghimi提供了一个采用零漂放大器做高精度信号调节的实例。该放大器设计实现了超低偏移电压与漂移、高开环增益、高电源抑制比、高共模抑制能力,且无1/f噪声,设计人员获得了无需校正的便利。

传感器的信号调节技术

图1中的电路是一个单电源精密电子秤, 它使用了AD7791 ,这是一款小功率带缓冲的24 位Σ - ΔADC , 还有一只外接的ADA4528- x 零漂放大器。电路已经过了ADI的建立与测试,具体说明见参考文献1, 在10 mV满量程输出下,对一个测重元件可产生15.3 位的无噪声编码分辨率, 并在从9.5Hz~120Hz的整个输出数据区间上都能保持良好的性能。

电路中的差分放大器包括两只低噪声零漂ADA 4528 放大器,它具有1kHz 时5. 6nV/电压噪声密度,0.3μV偏移电压,0.002μV /失调电压漂移,以及分别为158dB和150dB的共模抑制与电源抑制。电路增益等于1+2R1/RG,电容C1、C2与电阻R1、R2并联实现的低通滤波器将噪声带宽限制到4.3Hz,阻止了进入Σ - Δ ADC 的噪声量。C5、R3和R4构成一个截止频率为8Hz 的差分滤波器, 用于进一步限制噪声。C3 、C4 与R3 、R4共同构成截止频率为159Hz的共模滤波器。

传感器的信号调节技术

另一个高精度小功率信号调节的例子是图2中给出的心电图电路,也在参考文献2中有说明。ECG电路必须工作在一个差分dc偏移下,因为电极有半电池电势。这个过压的容限通常是±300 mV,但在有些情况下可以为1V或更高。ECG电路中有电源电压的下降趋势及存在这个较高半电池电势,限制了可以加在第一级信号调节上的增益。

AD8237架构解决这一问题的方法是,从输出端到REF管脚接一个低频反相积分器,其摆幅最多为dc偏移,而不是dc偏移与增益的乘积。由于放大器增益加在积分器输出端,放大级可以施加高增益,并降低对系统其余部分的精度要求。这级放大之后信号路径中器件的噪声与偏移误差对整体精度几乎没有贡献。AD8607双微功耗仪表运放用于积分、缓冲与电平转换,电源电流为115μA。图中未显示应有的去耦部分。

零漂轨至轨输入与输出仪表放大器可以工作在最小1.8V 电源电压, 增益漂移为0.5 ppm / ,而失调漂移电压为0.2 μV / 。两只外接电阻可在1 ~1000 区间内设定增益值。AD 8607 可以满幅放大共模电压等于或超出300 mV电源电压的信号。

应用

Microchip公司的Tretter指出,当斩波稳零放大器首次进入市场时,它们具有大开关电流与布局敏感的特性, 使之既难使用成本又高。因此设计者将其局限用于那些性能非常关键的应用。自那以后, 工艺技术与硅设计的发展改善了零漂放大器的可用性, 从而在广泛的应用中找到了用武之地, 包括医疗设备、工业流量仪表、万用表、高端称重计, 甚至游戏机等。很多传感器通常都排列成一种Wheatstone桥结构,如应力规、RTD(电阻温度检测器)和压力传感器(图3),因为这种电路类型提供了出色的灵敏度。即使在一个Wheatstone桥结构中使用了多只传感器, 输出电压的总变化也相对较小,通常在毫伏区间。由于信号幅度小,一般需要一个增益级,然后再通过ADC将电压转换为数字信号。Tretter称,零漂放大器是这类应用的一个上佳选择,因为它有高增益和最低的噪声。

传感器的信号调节技术

IA设计考虑

Touchstone半导体公司营销与应用副总裁Adolfo A Garcia指出,当电源电压低(3V),并且可选自完备IA(仪表放大器)有限时,设计自己的IA最为简单直接,只需要了解运放的输入输出dc特性与电路结构。构建仪表运放有两种很常见的结构,分别采用两只和三只运放。

传感器的信号调节技术

图4给出了两种运放结构。当采用单电源轨至轨的小功率运放时,主要的选择考虑(根据应用情况)包括:dc特性,如VOS、TCVOS、AVOL(MIN)、IOS、VOH(MIN)和VOL(MAX),以及ac特性,如放大器输入相关噪声与带宽。最大输出动态范围与应用无关,是实现最高电路性能的关键。据Garcia称,输出级能提供最宽动态范围的单电源运放是最佳选择,因为避免了放大器输出级饱和问题。

注意图4电路传输方程中的基准电压项(VREF)。为避免AMP1的输出饱和,仪表放大器的输出信号的测量必须针对VREF。在一个3 V (或更低电压)的系统中,如要电路有最大的动态范围,并避免输出级的饱和问题,只要简单地将VREF设为电源的一半就足够了。不过Garcia发现,只有所选运放的VOH(MIN)和VOL(MAX)规格相对其电源数据对称时,这个方法才是有效的。

传感器的信号调节技术

在式2中,是IA电路上所加的最大差分输入电压。如果所需增益是一个已知的电路参数,则可以重新排列式中的相应项,以确定为防止输出级饱和而能给电路施加的最大输入差分电压。

为了以最小功率运行,电路中使用的电阻应为100kΩ或更大,具体要看噪声和带宽设计方面的考虑。另外要指出的是,运放的VOH(MIN)和VOL(MAX)电压规格很大程度上由放大器输出级负载所决定,因此要注意负载电阻的情况。

有一个实际例子,选择的是一只TS1002 双0.6μA运放,构造了一个增益为10的双运放IA,它的工作电源为2.5V。TS1002在100kΩ负载下的VOH(MIN)和VOL(MAX)规格分别为2.498V和0.001V 。使用式1, VREF等于(2.498V+ 0.001V)/2=1.249V,输出级被偏置在最大输出动态范围内,避免了输出级饱和。在上述增益10情况下,为避免输出级饱和而施加的最大差分输入电压为:(2.498V+0.001V)/(2×10),约125mV。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
饮料灌装监控系统