×
工业控制 > 工业自动化 > 详情

基于CAN总线的四路舵机控制器的研究

发布时间:2021-02-23 发布时间:
|
舵机是导弹飞控组织的重要部分。随着高性能稀土电机技术和高能电池的发展,精确制导武器上高性能舵机系统的研究被重视,各利新型的电机伺服系统的控制技术不断出现,提高舵机伺服系统的性能成为当前的迫切需要。为此,设计者在考虑了谐波传动的随速度波动和低阻尼特点,以提高舵机系统控制品质为目标,提出了一种新型舵机控制系统。该硬件系统以主控芯片DSPTMS320F2812为核心,结合82C250(CAN总线收发器)和射极跟随器(以INA114为核心),并通过CAN2.0A总线接口实现了PC机与DSPTMS320F2812之间的参数传送。

由于舵机系统对定位精度、频率响应特性、阶跃响应特性和震荡次数等因素有着非常高的要求,因此其测试数据、分析曲线和指示结果是分析、判定系统性能和工作状态的重要依据和手段。本文所涉及的控制器具有CAN2.0总线接口,它负责与PC机通信,这使得控制器在运行中产生的各种参数和变量能够实时地传送并在CRT上显

示,极大地方便了参数变化趋势观察和控制过程的判断分析,为加快参数的整定奠定了基础。

1.系统的构成与工作原理

1.1 系统的构成

如图1所示,该系统由主控板卡、电机驱动板卡、微型计算机、CAN总线通信卡,以及四路舵机组成。其中CAN总线通信卡外购自研华公司,插入微型计算机的ISA插槽中,安装驱动程序后便可以在该公司提供的DLL动态链接库的基础上进行开发,编写上位机应用程序。主控板卡中的运算处理器采用DSP处理器TMS320F2812。

1.2 系统的工作原理

本系统由上位微机通过外购的CAN总线通信卡发送控制指令,经由CAN2.0A总线传送至主控板卡。主控板卡将采集到的舵机实时位置数据,与上位机传来的位置指令数据,代入到组合式控制算法中进行运算。处理后得到的PWM调制波形作为电机驱动板卡的输入信号,通过电机驱动板卡上的H桥电路对电机进行驱动,进而完成对电机的控制。另外,主控板卡还将舵机运行状态数据经由CAN2.0A总线上行传送至上位微机,由PC机测控应用程序对其进行后期分析处理。

2.系统的硬件电路描述

2.1 主控板卡部分

2.1.1 主控板卡的构成

在整个硬件系统中,主控板是核心的部分。该板卡的原理框图如图2所示。此板卡的主控芯片DSPTMS320F2812,其内部嵌有CAN总线控制器,用户可通过CAN总线与计算机进行高速实时通信。我们采用飞利浦公司的82C250作为CAN总线控制器相配合使用的CAN总线收发器,完成总线的传输电平转换。采用ADI公司电压基准源REF192给DSP内部的模数转换器提供标准比较电压。在舵机电位器产生的表征角度值的反馈电压信号送至DSP处理器的ADC模块以前,为了使主控板卡的输入阻抗趋近于无穷大,加入了一组以BB公司的精密仪表运放INA114为核心的射极跟随器。

2.1.2 主控板卡的功能

主控板卡不但承担着执行来自上位机的控制指令并将指令执行的实时状态上行送至上位机的任务,而且还要将经过DSP内部组合式控制算法的运算产生的相应占空比的PWM信号送至电机驱动板卡,实现对4路电机的精准控制。

板卡中各部分的具体职能如下:

a.三态缓冲器件LVT245一方面加大PWM信号的驱动电流,提高其驱动能力;另一方面可以保护DSP芯片免受功率驱动板卡的冲击损害。

b.DSP处理器TMS320F2812主要有4项功能,分别是:

(1)eCAN控制器按约定的通信胁议利用CAN2.0A总线与上位计算机进行通信。

(2)模数转换控制器以12位精度、1兆赫兹的采样频率将舵机电位器送来的反馈模拟信号进行数字化转换,并将其送入到CPU中进行相应的算数滤波处理。

(3)中央处理单元(CPU)将传来的目标值同滤波过的实时角度反馈数据一起代入到组合式算法中运算,生成14位占空比数值。

(4)PWM事件管理器接收由CPU运算产生的占空比数值,以此为依据生成16K赫兹频率、14位细分精度的PWM信号。

c.CAN总线收发器82C250芯片将DSP内部eCAX控制器的逻辑电平转换为总线上的差动电平,通过CAN通信卡与上位机进行通信。该芯片具有较好的电磁兼容性,可以适用于电磁环境复杂的弹内腔体。

d.舵机反馈的舵偏角信号为0~6v,而F2812的前向模拟输入通道的转换电压范围为3V,因此本文以4片INA114为核心的前端调理模块将反馈回来的4路模拟信号进行分压,将其转换到适合DSP内部ADC模块工作的电压范围;另外,该调理模块形同一组射极跟随器,令输出阻抗接近于无穷小,输入阻抗接近于无穷大,在一定程度上减小了反馈电压的失真。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
人应该更像人.未来机器更应该更像机器