[page]
根据以上传感器识别赛道的原理,可以把激光管和接收管放置在车模前侧的左边或右边,使发射的激光平行于赛道,如图2所示,还可以通过调整激光的作用距离来调整检测坡道提前量的大小。
2.2 软件实现
当车模前方没有坡道时,激光平行于赛道,此时,光线不会被反射,即接收管不会接收到光线,单片机收到的返回值为1。当车模靠近坡道到一定距离时,由于赛道的两侧是白色部分,激光管又置于车模的两侧,所以此时激光照射到赛道的白色部分,光线被反射,接收管接收到光线,单片机收到的返回值为0。当车模处于爬坡状态和坡顶时,光线照射不到赛道,不会被反射,接收管不会接收到光线,单片机收到的返回值为1。当车模处于下坡阶段时,光线照射到赛道的白色部分,发生反射,接收管接收到光线,单片机收到的返回值变为0。当车模通过坡道后,光线又照射不到赛道,不会被反射,接收管不会接收到光线,单片机收到的返回值为1。具体过程如图3所示。
[page]
在车模通过坡道的整个过程中,不难发现,单片机接收到的信号由以下变化过程1—0—1—0—1,共发生了4次跳变,根据这个原理设计算法。当发生第一次跳变时,说明车模前方有坡道,此时车模进入盲过阶段,车模按前一状态保持运动,直至单片机检测到最后一次跳变为止,具体程序流程如图4所示,如此便可以实现单个激光传感器对坡道的检测。
3 实验结果分析
将该方案应用到智能车实际的赛道检测算法中,通过实验,该方案可以提前检测到跑道,而且提前量可以根据自己的需要进行调整。相比于用倾角传感器和加速度传感器检测坡道的方案,该方案既经济实惠又能提前检测出坡道。但应用肓过法对车模的机械要求较高,在通过坡道的过程中不能自行调整,实验过程中可以根据实际情况选择是否再加一排红外传感器或作用距离比较近的激光管来克服这个不足。
实验过程中还发现一些问题,即在车模前部的左侧或右侧放置的激光管如果太靠近地面,则容易把周围的浅色物品识别为坡道,因此传感器的放置位置应当尽可能高一些,或者把激光的功率适当调小,使其作用距离不要太远,减小误判的几率。
4 结束语
本文介绍了一种激光传感器智能车利用单个激光管检测坡道的方法,通过记录信号跳变次数,从而得到了智能车通过坡道时的相关信息。通过实验,该方法简便可行,易于实现,成本较低,可以提前检测到坡道,且提前量的大小可以调整,利用该方案智能车可以顺利地通过坡道。
『本文转载自网络,版权归原作者所有,如有侵权请联系删除』