×
单片机 > 单片机程序设计 > 详情

再造STM32---第五部分:使用寄存器点亮 LED 灯

发布时间:2020-06-10 发布时间:
|

       学习本章时,配合《STM32F4xx 中文参考手册》 “通用 I/O(GPIO)” 章节一起阅读,效果会更佳,特别是涉及到寄存器说明的部分。 关于建立工程时使用 KEIL5 的基本操作,请参考前面的章节。

 


5.1 GPIO 简介:

       GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚, STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32 芯片的 GPIO 被分成很多组,每组有 16 个引脚,如型号为 STM32F4IGT6 型号的芯片有 GPIOA、 GPIOB、 GPIOC 至 GPIOI 共 9 组 GPIO,芯片一共 176 个引脚,其中 GPIO就占了一大部分,所有的 GPIO 引脚都有基本的输入输出功能。


       最基本的输出功能是由 STM32 控制引脚输出高、低电平,实现开关控制,如把 GPIO引脚接入到 LED 灯,那就可以控制 LED 灯的亮灭,引脚接入到继电器或三极管,那就可以通过继电器或三极管控制外部大功率电路的通断。


        最基本的输入功能是检测外部输入电平,如把 GPIO 引脚连接到按键,通过电平高低区分按键是否被按下。



5.2 GPIO 框图剖析:


        通过 GPIO 硬件结构框图,就可以从整体上深入了解 GPIO 外设及它的各种应用模式。该图从最右端看起,最右端就是代表 STM32 芯片引出的 GPIO 引脚,其余部件都位于芯片内部。

 


5.2.1 基本结构分析:

下面我们按图中的编号对 GPIO 端口的结构部件进行说明。



1. 保护二极管及上、下拉电阻:

       引脚的两个保护二级管可以防止引脚外部过高或过低的电压输入,当引脚电压高于VDD_FT 时, 上方的二极管导通,当引脚电压低于 VSS 时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。尽管有这样的保护,并不意味着 STM32 的引脚能直接外接大功率驱动器件,如直接驱动电机,强制驱动要么电机不转,要么导致芯片烧坏,必须要加大功率及隔离电路驱动。具体电压、电流范围可查阅《STM32F4xx 规格书》。

       上拉、下拉电阻, 从它的结构我们可以看出, 通过上、下拉对应的开关配置,我们可以控制引脚默认状态的电压,开启上拉的时候引脚电压为高电平,开启下拉的时候引脚电压为低电平,这样可以消除引脚不定状态的影响。如引脚外部没有外接器件,或者外部的器件不干扰该引脚电压时, STM32 的引脚都会有这个默认状态。

       也可以设置“既不上拉也不下拉模式”,我们也把这种状态称为浮空模式,配置成这个模式时,直接用电压表测量其引脚电压为 1 点几伏,这是个不确定值。所以一般来说我们都会选择给引脚设置“上拉模式”或“下拉模式”使它有默认状态。

       STM32 的内部上拉是“弱上拉”,即通过此上拉输出的电流是很弱的,如要求大电流还是需要外部上拉。

       通过“上拉/下拉寄存器 GPIOx_PUPDR”控制引脚的上、下拉以及浮空模式。

 


2. P-MOS 管和 N-MOS 管:

       GPIO 引脚线路经过上、下拉电阻结构后,向上流向“输入模式”结构,向下流向“输出模式”结构。先看输出模式部分,线路经过一个由 P-MOS 和 N-MOS 管组成的单元电路。这个结构使 GPIO 具有了“推挽输出”和“开漏输出”两种模式。

        所谓的推挽输出模式,是根据这两个 MOS 管的工作方式来命名的。在该结构中输入高电平时,上方的 P-MOS 导通,下方的 N-MOS 关闭,对外输出高电平;而在该结构中输入低电平时, N-MOS 管导通, P-MOS 关闭,对外输出低电平。当引脚高低电平切换时,两个管子轮流导通,一个负责灌电流,一个负责拉电流,使其负载能力和开关速度都比普通的方式有很大的提高。推挽输出的低电平为 0 伏,高电平为 3.3 伏,参考图 5-2 左侧,它是推挽输出模式时的等效电路。


       而在开漏输出模式时,上方的 P-MOS 管完全不工作。如果我们控制输出为 0,低电平,则 P-MOS 管关闭, N-MOS 管导通,使输出接地,若控制输出为 1 (它无法直接输出高电平)时,则 P-MOS 管和 N-MOS 管都关闭,所以引脚既不输出高电平,也不输出低电平,为高阻态。为正常使用时必须接上拉电阻(可用 STM32 的内部上拉,但建议在 STM32 外部再接一个上拉电阻),参考图 5-2 中的右侧等效电路。它具“线与”特性,也就是说,若有很多个开漏模式引脚连接到一起时,只有当所有引脚都输出高阻态,才由上拉电阻提供高电平,

此高电平的电压为外部上拉电阻所接的电源的电压。若其中一个引脚为低电平,那线路就相当于短路接地,使得整条线路都为低电平, 0 伏。

       推挽输出模式一般应用在输出电平为 0 和 3.3 伏而且需要高速切换开关状态的场合。在 STM32 的应用中,除了必须用开漏模式的场合,我们都习惯使用推挽输出模式。

       开漏输出一般应用在 I2C、 SMBUS 通讯等需要“线与”功能的总线电路中。除此之外,还用在电平不匹配的场合,如需要输出 5 伏的高电平,就可以在外部接一个上拉电阻, 上拉电源为 5 伏, 并且把 GPIO 设置为开漏模式,当输出高阻态时,由上拉电阻和电源向外输出 5 伏的电平。

       通过 “输出类型寄存器 GPIOx_OTYPER”可以控制 GPIO 端口是推挽模式还是开漏模式。

 


3. 输出数据寄存器:

       前面提到的双 MOS 管结构电路的输入信号,是由 GPIO“输出数据寄存器GPIOx_ODR”提供的,因此我们通过修改输出数据寄存器的值就可以修改 GPIO 引脚的输出电平。而“置位/复位寄存器 GPIOx_BSRR”可以通过修改输出数据寄存器的值从而影响电路的输出。

4. 复用功能输出:

       “复用功能输出”中的“复用”是指 STM32 的其它片上外设对 GPIO 引脚进行控制,此时 GPIO 引脚用作该外设功能的一部分,算是第二用途。从其它外设引出来的“复用功能输出信号”与 GPIO 本身的数据据寄存器都连接到双 MOS 管结构的输入中,通过图中的梯形结构作为开关切换选择。


        例如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯发送引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,由串口外设控制该引脚,发送数据。

5. 输入数据寄存器:

       看 GPIO 结构框图的上半部分,它是 GPIO 引脚经过上、下拉电阻后引入的,它连接到施密特触发器,信号经过触发器后,模拟信号转化为 0、 1 的数字信号,然后存储在“输入数据寄存器 GPIOx_IDR”中,通过读取该寄存器就可以了解 GPIO 引脚的电平状态。


6. 复用功能输入:

        与“复用功能输出”模式类似,在“复用功能输出模式”时, GPIO 引脚的信号传输到STM32 其它片上外设,由该外设读取引脚状态。


        同样,如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯接收引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,使 USART 可以通过该通讯引脚的接收远端数据。



7. 模拟输入输出:

        当 GPIO 引脚用于 ADC 采集电压的输入通道时,用作“模拟输入”功能,此时信号是不经过施密特触发器的,因为经过施密特触发器后信号只有 0、 1 两种状态,所以 ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。类似地,当 GPIO 引脚用于 DAC 作为模拟电压输出通道时,此时作为“模拟输出”功能, DAC 的模拟信号输出就不经过双 MOS 管结构了,在 GPIO 结构框图的右下角处,模拟信号直接输出到引脚。同时,当 GPIO 用于模拟功能时(包括输入输出),引脚的上、下拉电阻是不起作用的,这个时候即使在寄存器配置了上拉或下拉模式,也不会影响到模拟信号的输入输出。



5.2.2 GPIO 工作模式:


       总结一下,由 GPIO 的结构决定了 GPIO 可以配置成以下模式:

1. 输入模式(上拉/下拉/浮空):

       在输入模式时, 施密特触发器打开, 输出被禁止。 数据寄存器每隔 1 个 AHB1 时钟周期更新一次,可通过输入数据寄存器GPIOx_IDR 读取 I/O 状态。 其中 AHB1 的时钟如按默认配置一般为 180MHz。用于输入模式时,可设置为上拉、下拉或浮空模式。

2. 输出模式(推挽/开漏,上拉/下拉):

       在输出模式中, 输出使能,推挽模式时双 MOS 管以方式工作,输出数据寄存器GPIOx_ODR 可控制 I/O 输出高低电平。开漏模式时,只有 N-MOS 管工作,输出数据寄存器可控制 I/O 输出高阻态或低电平。 输出速度可配置,有 2MHz25MHz50MHz100MHz 的选项。


此处的输出速度即 I/O 支持的高低电平状态最高切换频率,支持的频率越高,功耗越大,如果功耗要求不严格,把速度设置成最大即可。此时施密特触发器是打开的,即输入可用,


关键字:STM32  寄存器  点亮LED  灯

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
51单片机CO2检测显示程序解析