×
单片机 > 单片机程序设计 > 详情

STM32之时钟频率和定时器时钟讲解

发布时间:2020-06-01 发布时间:
|
********************************

本学习笔记基于STM32固件库V3.0
使用芯片型号:STM32F103
开发环境:MDK
********************************

第一课 时钟频率

    STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

    在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

文件开头就有一个这样的定义: 
//#define SYSCLK_FREQ_HSE    HSE_Value 
//#define SYSCLK_FREQ_20MHz 20000000 
//#define SYSCLK_FREQ_36MHz 36000000 
//#define SYSCLK_FREQ_48MHz 48000000 
//#define SYSCLK_FREQ_56MHz 56000000 
#define SYSCLK_FREQ_72MHz 72000000

ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
#define SYSCLK_FREQ_72MHz 72000000 
也就是103系列能跑到的最大值72M

然后这个 C文件继续往下看 
#elif defined SYSCLK_FREQ_72MHz 
const uint32_t SystemFrequency         = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: 
#elif defined SYSCLK_FREQ_72MHz 
static void SetSysClockTo72(void);

这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了

所以设置系统时钟的流程就是: 
首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:
第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000 
第二个:调用SystemInit()

 

STM32中定时器的时钟源 

STM32中有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。其它6个为普通定时器,时钟由APB1的输出产生。

下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:

 

从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。
下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当 APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1 时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz的时钟频率。能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
51单片机CO2检测显示程序解析