×
嵌入式开发 > 详情

整流器数字控制与驱动技术介绍

发布时间:2020-06-30 发布时间:
|

1引言

在主PWM控制器位于初级侧的低DC输出电压隔离型开关电源(SMPS)中,通常采用专门设计的MOSFET作为同步整流器(SR)。作为SR使用的MOSFET具有非常小的导通损耗,有助于提高系统效率。

在初级侧控制的隔离SMPS拓扑中,由于在隔离变压器次级侧没有PWM控制信号,故欲产生适当的SR控制信号显得比较困难。但是,可以从变压器次级输出获得有关数据。由于电路寄生元件的存在,同步信号在从隔离变压器输出分离(withdrawn)时,相对于初级PWM信号会发生延迟,并且在不连续导通模式(DCM)状态会出现振荡。因此,为SR提供驱动的控制电路必须能避免发生错误的操作。

在初级侧控制的隔离拓扑中,为驱动SR需要适当的控制电路,以处理同步时钟信号(clock)从隔离变压器的输出移开,解决驱动信号相对于时钟输入的定时等问题。若对SR控制不当,在两个器件之间会发生“跨越导通”(crossconduction)。同时,在隔离拓扑的次级由于相对于初级主开关(MOSFET)驱动信号的延迟,会在相关元件之间形成短路,发生“贯通”(shootthrough)现象。产生贯通的机理,具体取决于变换器拓扑结构。

2同步整流器数字控制方法

在用作产生SR驱动信号的方案中,首推数字控制方法。

2ue0101系统基本结构

SR数字控制系统一般由振荡器(OSC)、限定状态机构(FiniteStatesMachine,简写FSM)、两个耦合的向上/向下(UP/DOWN)计数器和两个控制输出逻辑等单元电路所组成,系统框图如图1所示。

控制电路有3个输入和2个输出。其中,2个输出为隔离变换器次级2只MOSFETs提供互补驱动信号,3个输入包括1个时钟信号和2个输出的期望(anticipation)时间设定。不论是接通还是关断,2个输出OUT1和OUT2没有任何交迭。开关频率为fs的方波信号出现在时钟输入端,期望的定时通过外部有关



输入设定。2个计数器工作方式及作用不同:DOWN计数器用于处理输出截止,UP计数器连续获取OUT2开关周期期间或OUT1接通时间内的有关数据。控制系统根据前面周期内存储的有关信息,在开关周期截止期内的输出被预先处理。采用这种控制方法,开关周期和接通时间(tON)被逐周连续监测。

2ue0102稳定条件

在稳态条件(固定频率和固定占空比)下,两个开关周期中与输出OUT2相关的波形如图2所示。

在第1个开关周期(TS1)内,在时钟输入的上升沿上,两个(UP/DOWN)计数器中第1个开始计算内部时钟(CK)脉冲。在接下来的一个时钟输入的上升沿(TS1结束)上,计数器停止计算。计算过的脉冲数目(n2)把开关周期的持续时间考虑在内。所存储的数据,在下一个开关周期中被利用。

在第2个开关周期中,在内部时钟输入的上升沿上,第1个计数器由大到小计算(countsDOWN)内部时钟脉冲,并且在计算到(n2-x2)个脉冲时终止。第2个计数器计算新的尚未计算的内部时钟脉冲,并适时修正开关周期(TS)期间的有关数据。OUT2超前截止总量为X2·TI(TI为内部时钟脉冲周期),并通过OUT2预期时间输入设定。计数器UP或DOWN在每个周期内的功能,相对于先前周期被交换。

为预期关断OUT1,另外两个UP/DOWN计数器将考虑计及接通时间(tON)期间的有关数据,相关波形如图3所示。

在第1个开关周期内,第1个计数器在时钟输入上升沿上开始计数,并且在时钟输入下降沿上停止。其间计算的脉冲数量为n1,只计及tON时间之内的脉冲数。

在第2个开关周期内,第1个计数器递减计数,在计算到n1-x1时停止。关断OUT1的超前时间总计为x1·Ti,并由OUT1预期时间输入设定。第2个计数器向上(由小到大)计算时钟输入上升沿与下降沿之间的脉冲数目。


『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
NXP推出Wi-Fi 6E三频段SOC 充分释放6GHz频谱潜力