×
嵌入式 > 嵌入式开发 > 详情

IO端口和IO内存的区别及分别使用的函数接口

发布时间:2020-08-20 发布时间:
|
IO端口和IO内存的区别及分别使用的函数接口

每个外设都是通过读写其寄存器来控制的。外设寄存器也称为I/O端口,通常包括:控制寄存器、状态寄存器和数据寄存器三大类。根据访问外设寄存器的不同方式,可以把CPU分成两大类。一类CPU(如M68K,Power PC等)把这些寄存器看作内存的一部分,寄存器参与内存统一编址,访问寄存器就通过访问一般的内存指令进行,所以,这种CPU没有专门用于设备I/O的指令。这就是所谓的“I/O内存”方式。另一类CPU(典型的如X86),将外设的寄存器看成一个独立的地址空间,所以访问内存的指令不能用来访问这些寄存器,而要为对外设寄存器的读/写设置专用指令,如IN和OUT指令。这就是所谓的“I/O端口”方式。但是,用于I/O指令的“地址空间”相对来说是很小的,如x86 CPU的I/O空间就只有64KB(0-0xffff)。

结合下图,我们彻底讲述IO端口和IO内存以及内存之间的关系。主存16M字节的SDRAM,外设是个视频采集卡,上面有16M字节的SDRAM作为缓冲区。

1.CPU是i386架构的情况

在i386系列的处理中,内存和外部IO是独立编址,也是独立寻址的。MEM的内存空间是32位可以寻址到4G,IO空间是16位可以寻址到64K。

在Linux内核中,访问外设上的IO Port必须通过IO Port的寻址方式。而访问IO Mem就比较罗嗦,外部MEM不能和主存一样访问,虽然大小上不相上下,可是外部MEM是没有在系统中注册的。访问外部IO MEM必须通过remap映射到内核的MEM空间后才能访问。为了达到接口的同一性,内核提供了IO Port到IO Mem的映射函数。映射后IO Port就可以看作是IO Mem,按照IO Mem的访问方式即可。

3. CPU是ARM或PPC架构的情况

在这一类的嵌入式处理器中,IO Port的寻址方式是采用内存映射,也就是IO bus就是Mem bus。系统的寻址能力如果是32位,IO Port+Mem(包括IO Mem)可以达到4G。

1.使用I/O端口

I/O端口是驱动用来和很多设备通讯的方法。

1.1、分配I/O端口

在驱动还没独占设备之前,不应对端口进行操作。内核提供了一个注册接口,以允许驱动声明其需要的端口:

#include
/* request_region告诉内核:要使用first开始的n个端口。参数name为设备名。如果分配成功返回值是非NULL;否则无法使用需要的端口(/proc/ioports包含了系统当前所有端口的分配信息,若request_region分配失败时,可以查看该文件,看谁先用了你要的端口) */
structresource*request_region(unsignedlongfirst,unsignedlongn,constchar*name);
/* 用完I/O端口后(可能在模块卸载时),应当调用release_region将I/O端口返还给系统。参数start和n应与之前传递给request_region一致 */
voidrelease_region(unsignedlongstart,unsignedlongn);
/*check_region用于检查一个给定的I/O端口集是否可用。如果给定的端口不可用,check_region返回一个错误码。不推荐使用该函数,因为即便它返回0(端口可用),它也不能保证后面的端口分配操作会成功,因为检查和后面的端口分配并不是一个原子操作。而request_region通过加锁来保证操作的原子性,因此是安全的 */
intcheck_region(unsignedlongfirst,unsignedlongn);


1.2、操作I/O端口

在驱动成功请求到I/O端口后,就可以读写这些端口了。大部分硬件会将8位、16位和32位端口区分开,无法像访问内存那样混淆使用。驱动程序必须调用不同的函数来访问不同大小的端口。

如同前面所讲的,仅支持单地址空间的计算机体系通过将I/O端口地址重新映射到内存地址来伪装端口I/O。为了提高移植性,内核对驱动隐藏了这些细节。Linux内核头文件(体系依赖的头文件)定义了下列内联函数来存取I/O端口:

/*inb/outb:读/写字节端口(8位宽)。有些体系将port参数定义为unsigned long;而有些平台则将它定义为unsigned short。inb的返回类型也是依赖体系的 */
unsignedinb(unsignedport);
voidoutb(unsignedcharbyte,unsignedport);
/*inw/outw:读/写字端口(16位宽)*/
unsignedinw(unsignedport);
voidoutw(unsignedshortword,unsignedport);
/*inl/outl:读/写32位端口。longword也是依赖体系的,有的体系为unsigned long;而有的为unsigned int */
unsignedinl(unsignedport);
voidoutl(unsignedlongword,unsignedport);

从现在开始,当我们使用unsigned没有进一步指定类型时,表示是一个依赖体系的定义。

注意,没有64位的I/O端口操作函数。即便在64位体系中,端口地址空间使用一个32位(最大)的数据通路。

1.3、从用户空间访问I/O端口

1.2节介绍的函数主要是提供给驱动使用,但它们也可在用户空间使用,至少在PC机上可以。GNUC库在中定义它们。如果在用户空间使用这些函数,必须满足下列条件:

1)、程序必须使用-O选项编译来强制扩展内联函数

2)、必须使用ioperm和iopl系统调用(#include )来获得进行操作I/O端口的权限。ioperm为获取单个端口的操作许可,iopl为获取整个I/O空间许可。这2个函数都是x86特有的

3)、程序必须以root来调用ioperm或者iopl,或者其父进程(祖先)必须以root获得的端口操作权限

如果平台不支持ioperm和iopl系统调用,通过使用/dev/prot设备文件,用户空间仍然可以存取I/O端口。但是要注意的是,这个文件的定义也是依赖平台的。

1.4、字串操作

除了一次传递一个数据的I/O操作,某些处理器实现了一次传递一序列数据(单位可以是字节、字和双字)的特殊指令。这些所谓的字串指令,它们完成任务比一个C语言循环更快。下列宏定义实现字串操作,在某些体系上,它们通过使用单个机器指令实现;但如果目标处理器没有进行字串I/O指令,则通过执行一个紧凑的循环实现。

字串函数的原型是:

/* insb:从I/O端口port读取count个数据(单位字节)到以内存地址addr为开始的内存空间*/
voidinsb(unsignedport,void*addr,unsignedlongcount);
/* outsb:将内存地址addr开始的count个数据(单位字节)写到I/O端口port*/
voidoutsb(unsignedport,void*addr,unsignedlongcount);
/* insw:从I/O端口port读取count个数据(单位字)到以内存地址addr为开始的内存空间*/
voidinsw(unsignedport,void*addr,unsignedlongcount);
/* outsw:将内存地址addr开始的count个数据(单位字)写到I/O端口port*/
voidoutsw(unsignedport,void*addr,unsignedlongcount);
/* insl:从I/O端口port读取count个数据(单位双字)到以内存地址addr为开始的内存空间*/
voidinsl(unsignedport,void*addr,unsignedlongcount);
/* outsl:将内存地址addr开始的count个数据(单位双字)写到I/O端口port*/
voidoutsl(unsignedport,void*addr,unsignedlongcount);

注意:使用字串函数时,它们直接将字节流从端口中读取或写入。当端口和主机系统有不同的字节序时,会导致不可预期的结果。使用inw读取端口应在必要时自行转换字节序,以匹配主机字节序。

1.5、暂停式I/O操作函数

由于处理器的速率可能与外设(尤其是低速设备)的并不匹配,当处理器过快地传送数据到或自总线时,这时可能就会引起问题。解决方法是:如果在I/O指令后面紧跟着另一个相似的I/O指令,就必须插入一个小的延时。为此,Linux提供了暂停式I/O操作函数,这些函数的名子只是在非暂停式I/O操作函数(前面提到的那些I/O操作函数都是非暂停式的)名后加上_p,如inb_p、outb_p等。大部分体系都支持这些函数,尽管它们常常被扩展为与非暂停I/O同样的代码,因为如果体系使用一个合理的现代外设总线,没有必要额外暂停。

以下是ARM体系暂停式I/O宏的定义:

#defineoutb_p(val,port)outb((val),(port))
#defineoutw_p(val,port)outw((val),(port))
#defineoutl_p(val,port)outl((val),(port))
#defineinb_p(port)inb((port))
#defineinw_p(port)inw((port))
#defineinl_p(port)inl((port))
#defineoutsb_p(port,from,len)outsb(port,from,len)
#defineoutsw_p(port,from,len)outsw(port,from,len)
#defineoutsl_p(port,from,len)outsl(port,from,len)
#defineinsb_p(port,to,len)insb(port,to,len)
#defineinsw_p(port,to,len)insw(port,to,len)
#defineinsl_p(port,to,len)insl(port,to,len)

因为ARM使用内部总线,就没有必要额外暂停,所以暂停式的I/O函数被扩展为与非暂停式I/O同样的代码。

1.6、平台依赖性

由于自身的特性,I/O指令高度依赖于处理器,非常难以隐藏各体系间的不同。因此,大部分的关于端口I/O的源码是平台依赖的。以下是x86和ARM所使用函数的总结:

IA-32(x86)

x86_64

这个体系支持本章介绍的所有函数;port参数的类型为unsignedshort。

ARM

端口映射到内存,并且支持本章介绍的所有函数;port参数的类型为unsignedint;字串函数用C语言实现。

2、使用I/O内存

尽管I/O端口在x86世界中非常流行,但是用来和设备通讯的主要机制是通过内存映射的寄存器和设备内存,两者都称为I/O内存,因为寄存器和内存之间的区别对软件是透明的。

I/O内存仅仅是一个类似于RAM的区域,处理器通过总线访问该区域,以实现对设备的访问。同样,读写这个区域是有边际效应。

根据计算机体系和总线不同,I/O内存可分为可以或者不可以通过页表来存取。若通过页表存取,内核必须先重新编排物理地址,使其对驱动程序可见,这就意味着在进行任何I/O操作之前,你必须调用ioremap;如果不需要页表,I/O内存区域就类似于I/O端口,你可以直接使用适当的I/O函数读写它们。

由于边际效应的缘故,不管是否需要ioremap,都不鼓励直接使用I/O内存指针,而应使用专门的I/O内存操作函数。这些I/O内存操作函数不仅在所有平台上是安全,而且对直接使用指针操作I/O内存的情况进行了优化。

2.1、I/O内存分配和映射

I/O内存区在使用前必须先分配。分配内存区的函数接口在定义中:

/* request_mem_region分配一个开始于start,len字节的I/O内存区。分配成功,返回一个非NULL指针;否则返回NULL。系统当前所有I/O内存分配信息都在/proc/iomem文件中列出,你分配失败时,可以看看该文件,看谁先占用了该内存区 */
structresource*request_mem_region(unsignedlongstart,unsignedlonglen,char*name);
/* release_mem_region用于释放不再需要的I/O内存区*/
voidrelease_mem_region(unsignedlongstart,unsignedlonglen);
/* check_mem_region用于检查I/O内存区的可用性。同样,该函数不安全,不推荐使用 */
intcheck_mem_region(unsignedlongstart,unsignedlonglen);

在访问I/O内存之前,分配I/O内存并不是唯一要求的步骤,你还必须保证内核可存取该I/O内存。访问I/O内存并不只是简单解引用指针,在许多体系中,I/O内存无法以这种方式直接存取。因此,还必须通过ioremap函数设置一个映射。

#include
/*ioremap用于将I/O内存区映射到虚拟地址。参数phys_addr为要映射的I/O内存起始地址,参数size为要映射的I/O内存的大小,返回值为被映射到的虚拟地址 */
void*ioremap(unsignedlongphys_addr,unsignedlongsize);

/* ioremap_nocache为ioremap的无缓存版本。实际上,在大部分体系中,ioremap与ioremap_nocache的实现一样的,因为所有 I/O 内存都是在无缓存的内存地址空间中 */
void*ioremap_nocache(unsignedlongphys_addr,unsignedlongsize);
/* iounmap用于释放不再需要的映射 */
voidiounmap(void*addr);

经过ioremap(和iounmap)之后,设备驱动就可以存取任何I/O内存地址。注意,ioremap返回的地址不可以直接解引用;相反,应当使用内核提供的访问函数。

2.2、访问I/O内存

访问I/O内存的正确方式是通过一系列专门用于实现此目的的函数:

#include
/*I/O内存读函数。参数addr应当是从ioremap获得的地址(可能包含一个整型偏移); 返回值是从给定I/O内存读取到的值 */
unsignedintioread8(void*addr);
unsignedintioread16(void*addr);
unsignedintioread32(void*addr);
/*I/O内存写函数。参数addr同I/O内存读函数,参数value为要写的值 */
voidiowrite8(u8 value,void*addr);
voidiowrite16(u16 value,void*addr);
voidiowrite32(u32 value,void*addr);
/* 以下这些函数读和写一系列值到一个给定的 I/O 内存地址,从给定的buf读或写count个值到给定的addr。参数count表示要读写的数据个数,而不是字节大小 */
voidioread8_rep(void*addr,void*buf,unsignedlongcount);
voidioread16_rep(void*addr,void*buf,unsignedlongcount);
voidioread32_rep(void*addr,void*buf,unsignedlongcount);
voidiowrite8_rep(void*addr,constvoid*buf,unsignedlongcount);
voidiowrite16_rep(void*addr,constvoid*buf,unsignedlongcount);
voidiowrite32_rep(void*addr,,onstvoid*buf,,nsignedlongcount);
/* 需要操作一块I/O地址时,使用下列函数(这些函数的行为类似于它们的C库类似函数): */
voidmemset_io(void*addr,u8 value,unsignedintcount);
voidmemcpy_fromio(void*dest,void*source,unsignedintcount);
voidmemcpy_toio(void*dest,void*source,unsignedintcount);
/* 旧的I/O内存读写函数,不推荐使用 */
unsignedreadb(address);
unsignedreadw(address);
unsignedreadl(address);
voidwriteb(unsignedvalue,address);
voidwritew(unsignedvalue,address);
voidwritel(unsignedvalue,address);

2.3、像I/O内存一样使用端口

一些硬件有一个有趣的特性:有些版本使用I/O端口;而有些版本则使用I/O内存。不管是I/O端口还是I/O内存,处理器见到的设备寄存器都是相同的,只是访问方法不同。为了统一编程接口,使驱动程序易于编写,2.6内核提供了一个ioport_map函数:

/*ioport_map重新映射count个I/O端口,使它们看起来I/O内存。此后,驱动程序可以在ioport_map返回的地址上使用ioread8和同类函数。这样,就可以在编程时,消除了I/O端口和I/O 内存的区别*/
void*ioport_map(unsignedlongport,unsignedintcount);
/* ioport_unmap用于释放不再需要的映射 */
voidioport_unmap(void*addr);

注意,I/O端口在重新映射前必须使用request_region分配所需的I/O端口。


3、ARM体系的I/O操作接口

s3c24x0处理器使用的是I/O内存,也就是说:s3c24x0处理器使用统一编址方式,I/O寄存器和内存使用的是单一地址空间,并且读写I/O寄存器和读写内存的指令是相同的。所以推荐使用I/O内存的相关指令和函数。但这并不表示I/O端口的指令在s3c24x0中不可用。如果你注意过s3c24x0关于I/O方面的内核源码,你就会发现:其实I/O端口的指令只是一个外壳,内部还是使用和I/O内存一样的代码。

下面是ARM体系原始的I/O操作函数。其实后面I/O端口和I/O内存操作函数,只是对这些函数进行再封装。从这里也可以看出为什么我们不推荐直接使用I/O端口和I/O内存地址指针,而是要求使用专门的I/O操作函数——专门的I/O操作函数会检查地址指针是否有效是否为IO地址(通过__iomem或__chk_io_ptr)

#include

/*
* Generic IO read/write. These perform native-endian accesses. Note
* that some architectures will want to re-define __raw_{read,write}w.
*/
externvoid__raw_writesb(void__iomem*addr,constvoid*data,intbytelen);
externvoid__raw_writesw(void__iomem*addr,constvoid*data,intwordlen);
externvoid__raw_writesl(void__iomem*addr,constvoid*data,intlonglen);
externvoid__raw_readsb(constvoid__iomem*addr,void*data,intbytelen);
externvoid__raw_readsw(constvoid__iomem*addr,void*data,intwordlen);
externvoid__raw_readsl(constvoid__iomem*addr,void*data,intlonglen);
#define__raw_writeb(v,a)(__chk_io_ptr(a),*(volatileunsignedchar__force*)(a)=(v))
#define__raw_writew(v,a)(__chk_io_ptr(a),*(volatileunsignedshort__force*)(a)=(v))
#define__raw_writel(v,a)(__chk_io_ptr(a),*(volatileunsignedint__force*)(a)=(v))
#define__raw_readb(a)(__chk_io_ptr(a),*(volatileunsignedchar__force*)(a))
#define__raw_readw(a)(__chk_io_ptr(a),*(volatileunsignedshort__force*)(a))
#define__raw_readl(a)(__chk_io_ptr(a),*(volatileunsignedint__force*)(a))

关于__force和__iomem

#include

/* __force表示所定义的变量类型是可以做强制类型转换的 */
#define__force __attribute__((force))
/* __iomem是用来修饰一个变量的,这个变量必须是非解引用(no dereference)的,即这个变量地址必须是有效的,而且变量所在的地址空间必须是2,即设备地址映射空间。0表示normal space,即普通地址空间,对内核代码来说,当然就是内核空间地址了。1表示用户地址空间,2表示是设备地址映射空间 */
#define__iomem __attribute__((noderef,address_space(2)))

I/O端口

#include

#defineoutb(v,p)__raw_writeb(v,__io(p))
#defineoutw(v,p)__raw_writew((__force __u16)
cpu_to_le16(v),__io(p))
#defineoutl(v,p)__raw_writel((__force __u32)
cpu_to_le32(v),__io(p))
#defineinb(p)({__u8 __v=__raw_readb(__io(p));__v;})
#defineinw(p)({__u16 __v=le16_to_cpu((__force __le16)
__raw_readw(__io(p)));__v;})
#defineinl(p)({__u32 __v=le32_to_cpu((__force __le32)
__raw_readl(__io(p)));__v;})
#defineoutsb(p,d,l)__raw_writesb(__io(p),d,l)
#defineoutsw(p,d,l)__raw_writesw(__io(p),d,l)
#defineoutsl(p,d,l)__raw_writesl(__io(p),d,l)
#defineinsb(p,d,l)__raw_readsb(__io(p),d,l)
#defineinsw(p,d,l)__raw_readsw(__io(p),d,l)
#defineinsl(p,d,l)__raw_readsl(__io(p),d,l)

I/O内存

#include

#defineioread8(p)({unsignedint__v=__raw_readb(p);__v;})
#defineioread16(p)({unsignedint__v=le16_to_cpu((__force __le16)__raw_readw(p));__v;})
#defineioread32(p)({unsignedint__v=le32_to_cpu((__force __le32)__raw_readl(p));__v;})
#defineiowrite8(v,p)__raw_writeb(v,p)
#defineiowrite16(v,p)__raw_writew((__force __u16)cpu_to_le16(v),p)
#defineiowrite32(v,p)__raw_writel((__force __u32)cpu_to_le32(v),p)
#defineioread8_rep(p,d,c)__raw_readsb(p,d,c)
#defineioread16_rep(p,d,c)__raw_readsw(p,d,c)
#defineioread32_rep(p,d,c)__raw_readsl(p,d,c)
#defineiowrite8_rep(p,s,c)__raw_writesb(p,s,c)
#defineiowrite16_rep(p,s,c)__raw_writesw(p,s,c)
#defineiowrite32_rep(p,s,c)__raw_writesl(p,s,c)

注意:

1)、所有的读写指令(I/O操作函数)所赋的地址必须都是虚拟地址,你有两种选择:使用内核已经定义好的地址,如在include/asm-arm/arch-s3c2410/regs-xxx.h中定义了s3c2410处理器各外设寄存器地址(其他处理器芯片也可在类似路径找到内核定义好的外设寄存器的虚拟地址;另一种方法就是使用自己用ioremap映射的虚拟地址。绝对不能使用实际的物理地址,否则会因为内核无法处理地址而出现oops。

2)、在使用I/O指令时,可以不使用request_region和request_mem_region,而直接使用outb、ioread等指令。因为request的功能只是告诉内核端口被谁占用了,如再次request,内核会制止(资源busy)。但是不推荐这么做,这样的代码也不规范,可能会引起并发问题(很多时候我们都需要独占设备)。

3)、在使用I/O指令时,所赋的地址数据有时必须通过强制类型转换为unsigned long,不然会有警告。

4)、在includeasm-armarch-s3c2410hardware.h中定义了很多io口的操作函数,有需要可以在驱动中直接使用,很方便。



『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
发明专利在疫情影响下的逆势增长