×
嵌入式 > 技术百科 > 详情

uC/OS-II实时操作系统在嵌入式平台上进行移植的一般方法和技巧

发布时间:2021-05-21 发布时间:
|

引言

---实时操作系统的使用,能够简化嵌入式系统的应用开发,有效地确保稳定性和可靠性,便于维护和二次开发。

μC/OS-II是一个基于抢占式的实时多任务内核,可固化、可剪裁、具有高稳定性和可靠性,除此以外,μC/OS-II的鲜明特点就是源码公开,便于移植和维护。

在μC/OS-II官方的主页上可以查找到一个比较全面的移植范例列表。但是,在实际的开发项目中,仍然没有针对项目所采用芯片或开发工具的合适版本。那么,不妨自己根据需要进行移植。

本文则以在TMS320C6711 DSP上的移植过程为例,分析了μC/OS-II在嵌入式开发平台上进行移植的一般方法和技巧。μC/OS-II移植的基本步骤

在选定了系统平台和开发工具之后,进行μC/OS-II的移植工作,一般需要遵循以下的几个步骤:

● 深入了解所采用的系统核心 ● 分析所采用的C语言开发工具的特点 ● 编写移植代码 ● 进行移植的测试 ● 针对项目的开发平台,封装服务函数 (类似80x86版本的PC.C和PC.H) 系统核心 无论项目所采用的系统核心是MCU、DSP、MPU,进行μC/OS-II的移植时,所需要关注的细节都是相近的。 首先,是芯片的中断处理机制,如何开启、屏蔽中断,可否保存前一次中断状态等。还有,芯片是否有软中断或是陷阱指令,又是如何触发的。 此外,还需关注系统对于存储器的使用机制,诸如内存的地址空间,堆栈的增长方向,有无批量压栈的指令等。 在本例中,使用的是TMS320C6711 DSP。这是TI公司6000系列中的一款浮点型号,由于其时钟频率非常高,且采用了超常指令字(VLIW)结构、类RISC指令集、多级流水等技术,所以运算性能相当强大,在通信设备、图像处理、医疗仪器等方面都有着广泛的应用。 在C6711中,中断有3种类型,即复位、不可屏蔽中断(NMI)和可屏蔽中断(INT4-INT15)。可屏蔽中断由CSR寄存器控制全局使能,此外也可用IER寄存器分别置位使能。而在C6711中并没有软中断机制,所以μC/OS-II的任务切换需要编写一个专门的函数实现。 此外,C6711也没有专门的中断返回指令、批量压栈指令,所以相应的任务切换代码均需编程完成。由于采用了类RISC核心,C6711的内核结构中,只有A0-A15和B0-B15这两组32bit的通用寄存器。 C语言开发工具 无论所使用的系统核心是什么,C语言开发工具对于μC/OS-II是必不可少的。 最简单的信息可以从开发工具的手册中查找,比如:C语言各种数据类型分别编译为多少字节;是否支持嵌入式汇编,格式要求怎样;是否支持“interrupt”非标准关键字声明的中断函数;是否支持汇编代码列表(list)功能,等等。 上述的这样一些特性,会给嵌入式的开发带来很多便利。TI的C语言开发工具CCS for C6000就包含上述的所有功能。 而在此基础上,可以进一步地弄清开发工具的一些技术细节,以便进行之后真正的移植工作。 首先,开启C编译器的“汇编代码列表(list)”功能,这样编译器就会为每个C语言源文件生成其对应的汇编代码文件。 在CCS开发环境中的方法是:在菜单“/Project/Build BACK”栏中选择“Interlisting:Opt/C and ASM(-s)”;或者,也可以直接在CCS的C编译命令行中加上“-s”参数。 然后分别编写几个简单的函数进行编译,比较C源代码和编译生成的汇编代码。例如: void FUNC_TEMP (void) { Func_tmp2(); //调用任一个函数 } 在CCS中编译后生成的ASM代码为: .asg B15, SP /⁄宏定义 _FUNC_TEMP: STW B3,SP--(8) /⁄入栈 NOP 2 CALL _ Func_tmp2 //----------- MVKL BACK, B3 /⁄函数调用 MVKH BACK, B3 //----------- NOP 3 BACK: LDW ++SP(8),B3 /⁄出栈 NOP 4 RET B3 /⁄函数返回 NOP 5 由此可见,在CCS编译器的规则中,B15寄存器被用作堆栈指针,使用通用存取指令进行栈操作,而且堆栈指针必须以8字节为单位改变。 此外,B3寄存器被用来保存函数调用时的返回地址,在函数执行之前需要入栈保护,直到函数返回前再出栈。 当然,CCS的C编译器对于每个通用寄存器都有约定的用途,但对于μC/OS-II的移植来说,了解以上信息就足够了。 最后,再编写一个用“interrupt”关键字声明的函数: interrupt void ISR_TEMP (void) { int a; a=0; } 生成的ASM代码为: _ISR_TEMP: STW B4,SP--(8) /⁄入栈 NOP 2 ZERO B4 //--------- STW B4,+SP(4) /⁄a=0 NOP 2 //---------- B IRP /⁄中断返回 LDW ++SP(8),B4 /⁄出栈 NOP 4 与前一段代码相比,对于中断函数的编译,有两点不同: ● 函数的返回地址不再使用B3寄存器,相应地也无需将B3入栈。(IRP寄存器能自动保存中断发生时的程序地址) ● 编译器会自动统计中断函数所用到的寄存器,从而在中断一开始将他们全部入栈保护——例如上述程序段中,只用到了B4寄存器。 编写移植代码 在深入了解了系统核心与开发工具的基础上,真正编写移植代码的工作就相对比较简单了。 μC/OS-II自身的代码绝大部分都是用ANSI C编写的,而且代码的层次结构十分干净,与平台相关的移植代码仅仅存在于OS_CPU_A.ASM、OS_CPU_C.C以及OS_CPU.H这三个文件当中。 在移植的时候,结合前面两个步骤中已经掌握的信息,基本上按照《嵌入式实时操作系统μC/OS-II》一书的相关章节的指导来做就可以了。 但是,由于系统核心、开发工具的千差万别,在实际项目中,一般都会有一些处理方法上的不同,需要特别注意。以C6711的移植为例: ● 中断的开启和屏蔽的两个宏定义为: #define TEST /⁄具体的开发项目代码 OS_CFG.H INCLUDES.H TEST.C ...... 如上,DSP_C6x_Service中的服务函数,类似于原作者提供的80x86版本中的PC.C和PC.H文件。在本文的例子中,服务函数则包括了上文提及的中断相关函数,以及系统初始化函数DSP_C6x_SystemInit()和时钟初始化函数DSP_C6x_TimerInit()等。 而具体的开发项目代码,则可以分别在“/TI_C6711”路径下新建自己的目录,就如同移植测试的“TEST”项目,而无需再关注μC/OS-II的源代码和服务函数。 如此,就可以避免不必要的编译错误,也便于开发项目的维护。

-

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

热门文章 更多
无人机新突破:或将利用手机发射塔追踪无人机